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PREFACE

This book grew out of notes for a one-semester course in classical mechanics
which I have taught for many years to senior and, more recently, junior physics students
at Dalhousie University. These students have normally taken one semester in mechanics
at the introductory level and one semester at the second year level; my course is their
final exposure to mechanics as undergraduates. The original aim of the course was to
introduce the student, in the more familiar setting of classical mechanics, to those ideas
and terms which he or she would later encounter in modified form in quantum
mechanics:  Lagrangian, action, Hamiltonian, Poisson brackets, canonical
transformations, etc. In recent years, with the resurgence of interest in mechanics,
especially non-linear dynamics, the emphasis of the course has shifted somewhat to
include these contemporary developments as well.

The resulting book now contains more malerial than can be covered comfortably
in a one-semester course. Experienced instructors can judge for themselves what material
their students should omit on first reading; this depends on the level of the course and the
emphasis the instructor wishes to place on the subject. While the book was written
primarily as a fourth year text, the range of difficulty is quite broad. It can thus be used
in third year, as I now do, simply by choosing the topics appropriately. Doing exercises
forms an important part of any learning expenence. The ones here have been chosen not
only to exercise the students' minds, but also to provide additional examples and
occasionally to introduce new topics,

Classical mechanics is a mature subject, and many others have written on it from
their personal perspectives. I have indicated by foowotes throughout the book some of
these other discussions which I have enjoyed studying and to which a student may refer
to get a different point of view or a fuller weatment-gf some topic.

I wish to thank my students for encouraging me to organize my perspective of
mechanics in this more formal way. My fricnd and colleague, David Kiang, has been
most helpful. He read an early version of the manuscript and made many valuable
suggestions for clarifying and improving the presentation and has been a continual source
of advice on all aspects of the work. The support of my family is much appreciated. In
particular, I thank my daughter Catherine for reading and editing my English; any
smoothness in the writing is the result of her efforts; the roughness which remains, 1 take
full responsibility for. My wife Patricia, good bow-paddler that she is, has helped me to
avoid the rocks and shoals in this project, s in all aspects of our canoe trip together. 1
thank her from the bottom of my heart.

Melvin G. Calkin
Halifax, Nova Scotia
November, 1995
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CHAPTER I
NEWTON'S LAWS

The aim of classical mechanics is to describe and predict the motion of bodies and
systems of bodies which are subject to various interactions. Newton's three laws of
motion form the basis of this description, so let us begin by reviewing these.

Newton's laws?!’

Newton's first law deals with non-interacting bodies. It says that the velocity
of an isolated body, one removed from the influence of other bodies, is constant. This law
defines a set of preferred coordinate frames, inertial frames, as frames in which
Newton's first law holds. Given an inertial frame, we can obtain others by translating the
original in space and time, by rotating the original through some angle about some axis, or
by giving the original frame a uniform velocity. Unless stated otherwise, we always refer
motion to an inertial frame. To a first approximation a coordinate frame attached to the
earth is an inertial frame. However, various physical phenomena such as the behavior of a
Foucault pendulum, the flight of a ballistic missil;, atmospheric and ocean currents,
indicate its true non-inertial nature. Better approximations to inertial frames are frames
attached to the sun or, even better, to the "fixed stars."

Newton's second and third laws deal with the effects of interaction between bodies
on their motion. Interactions cause the velocities of the bodies to change; the bodies
undergo acceleration. Let us consider two otherwise isolated interacting small bodies,
"particles.” We find that the accelerations a, and a, of the particles are oppositely
directed, and that their magnitudes are related by :

afa; =k,

where the ratio ki, is independent of the nature of the interaction between the particles. It

does not depend on whether the interaction arises because the particles are in contact with
one another, or because they are connected by a string or by a spring, or because they

interact gravitationally, etc. The ratio k5 is thus a quantity which we can associate with

the pair of particles themselves, as opposed to the particular interaction they happen to be
undergoing. Further, if we consider three particles, a pair at a time, we find that the three
acceleration ratios are not independent but are related by

SPLSSISTRAS
This, together with k;, = 1/k,, , shows that the acceleration ratio can be written

kjp =m,/my,

1Emst Mach, The Science of Mechanics, (The Open Court Publishing Co., Chicago, 1893), trans. Thomas
J. McCormack.



2 Chapter 1: Newton's Laws

where m; (m,) is a property of, something associated with, particle 1 (particle 2) alone.
The quantity m; (m,) is cailed the inertial mass of the particle. Putting these facts
together, we see that the accelerations of two interacting particles are related by

n]lal = -m232.

We describe the interaction by saying that particle 2 exerts a force Fyq;y on
particle 1, and particle 1 exerts a force )., on particle 2, such that

ma, = F20n1 and mja, = Flon2
with
FZonl = "FlonZ'

This last equation is Newton's third law: the force which particle 2 exerts on particle 1
is equal and opposite to the force which particle 1 exerts on particle 2. Itis another way of
stating our conclusions about the acceleration ratio of two interacting particles.

If we now consider three interacting particles, we find that the acceleration of any
one of them, say particle 1, is the vector sum of the acceleration of particle 1 due to particle
2 alone and the acceleration of particle 1 due to particle 3 alone (Fig. 1.01(a)), and thus

nya; = F2onl + F30n1

= Ftomlonl :

This is Newton's second law: the acceleration of a particle is directly proportional to
the total force acting on it (obtained by adding vectorially all the individual forces) and is
inversely proportional to the mass of the particle. This law should be understood in the
following way: we are meant to describe the interaction of our chosen particle with other
particles by specifying the force acting on it in terms of the locations and velocities of all the
particles. The form this takes depends, of course, on the nature of the interactions.

my
L)
lon3
F3onl r— —Flolalonk
/7
Z/ @ @
m Fo m, m,
(a) (b)

Fig. 1.01. Forces on three interacting particles
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Similar equations apply to particles 2 and 3 (Fig. 1.01(b)),

Myay = F3052 + Frons
m3a; = l?10113 + F20n3 .

Now suppose that the forces Fj,,, and F,, 5 are such that particles 2 and 3 are bound
together to form a single particle and move with a common acceleration

dy = a3 = 8y3.
Then, adding the above two equations, we find

(mz + .m3)323 = Flon2 + Flon3,

the internal forces F5,,, and F, 5 canceling because of Newton's third law, The bound
combination thus behaves as a single particle with mass

Moz =My +m3;

mass is additive. Further, the force acting on the bound combination can be taken to be the
total external force; the internal forces which hold the combination together need not be
taken into account.

To see how to apply these laws, we begm with some simple examples, most of
which will already be familiar to you.

Free fall

For our first example, consider the motion of a body of mass m dropped near the
surface of the earth. The only force acting on the body (ignoring air friction) is the

downward gravitational force mg; here g~9.8m/s? is the approximately constant
gravitational field due to the ¢arth. Newton's second law gives

ma = mg,

so, canceling the m, we see that the body falls with constant acceleration g. Indeed, since g
is body-independent, all bodies fall with the same constant acceleration:? Thc equation of
motion for the falling body takes the form (measuring x downwards)

d2

.—...._=

dat?

't

2For the consequences, sce A. Einstein in H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The
Principle of Relativity (Dover Publications, New York, NY, 1923), trans. W. Perrett and G. B. Jeffery, p.
99.
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Integrating, we find that the velocity is given by
X
— = vy +gt=v(t)
g " Vote (
where v is the initial velocity. Integrating once again, we find that the position of the
body is given by

1,2
x(t) = Xg + vgt +58t

where Xg is the initial position. The position is thus determined as a function of the time;
the expression also contains two constants of integration, adjustable parameters, which are
set by the initial conditions, the initial position and velocity.

Simple harmonic oscillator

In the above example the integration could be done immediately since we knew the
time dependence of the force: it was constant. Usually, however, the force is not known a
priori as a function of time. Rather, it is known as a function of position. Take, for
example, a mass m attached to a spring (Fig. 1.02).

X

F—

m

F = -kx
Fig, 1.02. Mass attached to a spring

It is found (Hooke's law) that the force F which the spring exerts on the mass is
proportional to the amount x the spring is stretched and is directed opposite the stretch,

F = -kx.

The proportionality constant k, a measure of the strength of the spring, is called the spring
constant. Newton's second law then gives

ma = -kx.

We cannot integrate this directly as in the free fall case. However, if we multiply the
equation by the velocity v, the left-hand side becomes

dv d
may = M-y = ——(%mvz),
dt dt
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and the right-hand side becomes
dx d
“kxv=-kx— = -— Lyx?).
dt dt Gl
Thus the motion is such that
E = %mv2 + %kx2

is constant in time. This quantity is called the total energy and is the sum of the kinetic

energy T = +mv’ and the potential energy V = Tkt
The energy equation can be rearranged to obtain

X t
=[ dt=t,
o b

To do the x-integration, we set

X = 1’%?-sirlq) dx = w/agEE--a:osdpd(tr

where ¢ is a new variable, the phase. The left-hand side then becomes

¢
m coso Nl . m
= de -=[d =w/——( ~ 9o
kJ% Tente ¢ kf:o ®=7 -0

so that the phase is a linear function of time,
4) = ‘PO + wt.

The rate at which the phase increases with time, w = Jk/m, is called the angular
frequency. The position of the mass as a function of time is thus given by

x = Asin{(wt + ¢g)

where A = 2E/k is called the amplitude of the motion. The mass oscillates back and

forth between x = +A and x =—A, going through a complete cycle in a time © = 27/w,
the period of the motion. This very important motion is called simple harmonic
motion. Its importance derives from the fact that, except in unusual circumstances,
motion near any stable equilibrium point is simple harmonic motion.
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The approach which we have used here to discuss the simple harmonic oscillator
cau be applied to any one-dimensional conservative system, for which F = —dV/dx; all we

have to do is to replace -2ka2 by the appropriate potential energy V(x). Such systems are
thus in principle always integrable.

Central force

When we move from one-dimensional problems to three-dimensional problems, the
degree of complexity increases enormously. Indeed, most three-dimensional problems
canriot be integrated analytically. There is, however, a class of problems which can still be
handled moderately easily, namely the motion of a particle acted on by a force F = Fr
which is always directed towards (or away from) a fixed point, the force center. This is
the so-called central force problem (Fig. 1.03(a)). Fc¢- such problems the torque
rx F on the particle about the force center is zero, and the angular momentum
L = r x (mv) is constant. The motion thus lies in a plane L-r = 0 which is perpendicular
to L and which passes through the force center, the orbital plane. Further, the motion is
such that the magnitude L of the angular momentum about the ferce center is constant,

/
r’
/
/
YA
Force center Force center
(a) (b)

Fig. 1.03. (1) Cenwual force, (b) Polar coordinates

It is convenient 1o introduce polar coordinates r and 8 in the orbital plane, with the

force center the pole (Fig. 1.03(b)). The position of the particle is then given by r = IT,
the velocity by

o _or,
ar dt dt
=i‘f'+r96,

and the acceleration by
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A

a-gl-i‘i+ig£+iéé+xéé+ré-d—g
dt dt dt

= (F - 1O7)F + (B + 2i6)0 .
In deriving these we have used the results

-(E - Qé and
dt

98 _ ¢
t

which follow readily from Fig. 1.043/

A A
0 +do

>

A A
ADdr-:dBB
+dr
A
I

Fig. 1.04. Changes in the unit vectors

Newton's second law then gives the equations of motion

m(F - 182) = F
m(H+2i0)=0 .
The second of these can be written
lg—(mrzé) 0
rdt

which shows that L = mr?8 is constant in time. The quantity L = (distance r from origin)
x (component mrf of mv perpendicular to r) is the magnitude of the angular momentum,

so this simply confirms what we already know. Its content can be expressed in a rather
picturesque way.

3 Alternate derivations can be found in Danicl Kleppner and Robert J. Kolenkow, An Intreduction to
Mechanics, (McGraw-Hill Book Company, New York, NY, 1973), pp. 27-38.
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Area swept out
intime t to t + dt

Fig. 1.05. Area swept out by radius vector

From Fig. 1.05, the radius vector sweeps out an area dA = %(r)(xédt) in a time dt, so the

rate at which it sweeps out ares is dA/dt = -é—rzé =L/2m. This, as we have seen, is

constant. Thus the particle moves along its orbit in such a way that the radius vector
sweeps out equal areas in equal times. Applied to the solar system, this is known as
Kepler's second law of planetary motion. We see, however, that it holds for any
cewral force, not just for the gravitational force.

The fact that L is constant can be used to eliminate 8 = L/ mr? from the radial
equation of motion. 1If, further, the central force is conservative, so that F = ~dV(r)/dr
where V is the potential energy, we can write

12 dv df 12
2mr

5+ V(r)).

The radial motion is thus the same as one-dimensional motion (but with r>0) in an
effective potential

2
V(1) = ——5+ V(©).
o 2mr? )

In particular, the total energy

E = Lmive + V(1) = Em(i + 169+ V(D)

=

2
m(iz + ;%_rf) +V(r) = %mi’2 + V5 (0)

is constant in time. This can be rearranged and integrated to obtain r as a function of t and
the parameters E, L, and initial radius rg. The result can then be substituted into

8= L/ mr?, and this equation integrated to obtain 8 as a function of t and the parameters E,
L. rp, and initial angle 64. These four parameters, together with the two required to
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specify the orbital plane, specify the orbit (ry and 8, give the initial position in the orbital
plane, and E and L then give the magnitude and direction of the initial velocity).

Before embarking on the integrations, either analytically or numerically, it is
worthwhile to get an overview of the general behavior to be expected, to obtain qualitative
pictures of the possible orbits and the ranges of *he parameters over which they occur.
These can be obtained by examining a sketch of Vg (r) versus r. We illustrate this idea by
applying it to the important central force, gravitation.

Gravitational force: qualitative

The gravitational force between two bodies, which are small compared to the
distance r between them, is given by

k v where V= —E

r dr r

is the gravitational potential. The constant k equals GmM where m and M are the
masses of the bodies and G is the gravitational constant. The same expression may be used
for the electrostatic force, the Coulomb force, between two electrically charged bodies,
provided we set k = -q,q, where q; and q, are the electric charges on the bodies. If one
of the bodies is much lighter than the other, say m << M, as is the case for the planets
compared with the sun, or artificial satellites with the earth, or an electron with a nucleus,
we can regard the heavy body as providing an-approximately fixed force center about
which the lighter body orbits. The effective potential is then

L2k
Vet = -=
eft 2mr* r
and is shown in Fig. 1.06.
Vet (r)
_____ Ey — — — — —
3T 1y Iy
44 4 2 }
I e
r
Ey

Fig. 1.06. Effective potential for the gravitational force
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We have seen that the constant total energy E of an orbiting body is the sum of the
kinetic energy %mf2 due to its radial motion and the effective potential V4. Since the
kinetic energy is non-negative, the total energy must be greater than or equal to the energy
E, at the bottom of the V4 potential well (Fig. 1.06). If the energy is Eg, then the
radius is fixed at ry and the orbit is a circle. If the energy is E; with Eq <E, <0, the
_ radial motion is like that of a particle in a one-dimensional potential well, the orbit radius

oscillating back and forth between an inner turning radius r; and an outer turning radius
1, With E=V gandr=0atr and ry. All the while the angle 6 is increasing. We see
that the orbit then looks qualitatively like one of those in Fig. 1.07.

Fig. 1.07. Qualitative shape of bound orbit

Since for gravity the force is attractive rather than repulsive at the inner turning radius, the
contact there must look like Fig. 1.07(a) rather than like (b). Detailed calculations to follow

show that the orbit for this case is in fact an ellipse. If the energy is E; = 0 or E; >0,
there is an inner turning radius but no outer turning radius. The orbiting body comes in
from infinity, reaches a minimum radius r3, and moves out again to infinity. The orbit
looks qualitatively like that in Fig. 1.08.

Fig. 1.08. Qualitative shape of scattering orbit

Detailed calculations to follow show that for the gravitational force the orbit is in fact a
parabola for energy E = 0 and a hyperbola for energy E > 0.,
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The-ideas used above to discuss the qualitative shape of the orbits in a gravitational
potential can also be applied to an arbitrary central potential. In addition to the situations
already considered for gravity, we may then encounter attractive potentials V(r) which
blow up faster than -1/r? as r — 0. The effective potential Vg then tends to — rather

than +% as T— 0 and, depending on the energy, there may be no inner turning radius.
For example, an orbit with energy E shown in Fig. 1.09(a) spirals in to the force center as
in Fig. 1.09(b).

chf(r)
E

—

r

(@ (b

Fig. 1.09. (a) A possible effective potential, (b) Qualitative shape of capture orbit

Gravitational force: quantitative

Let us now return to the gravitatio;ﬁal fo:ce and consider the detailed integration.
The energy and angular momentum equations

1 ., L2 % :
E=—mr2+-—2—~— and L =mr?0
2mr¢ ot )
lead, on integration, to r and © as functions of time. Rather than doing these integrations

immediately, however, it is more useful first to obtain r as a function of 0; that is, to obtain
the equation which describes the shape of the orbit. To do this, we set

in the energy equation and hence, on rearranging, write
r
dr
2 [2mE 1 Zmk J§
N T AT

d6 = 6-8,.

The r-integration is performed by setting first u = I/r, du = —dr/ 2 to give
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u u

_ du _ du
2mE  2mk 2 2,2 2 2’
IR T e o
L L AT mk? ) \" 2
Then set
mk mk 2L°E mk | 2L°E .
U-—=—5 1+——~—2—cosa and du-——T 1+——Zsmada.
L mk mk

Integration gives a = 6 - 8¢, which leads to the orbit equation

1 mk 2L°E
U=;="I"J§"[1+ 1+ me COS(B-eo)}.

This has the form of a conic section

=1+ecos(8-0;)

: . L? - 2L%E ,
with semi-latus-rectum p = — and eccentricity ¢ =4/1+ - We have chosen
mk m

the constant of integration so that 6 = By is the direction of pericenter, the point on the
orbit closest to the force center. The angle a =6 -0, from pericenter is called the true
anomaly. We can show that:

K L
for E=E; = - 1;1[,2 » € = 0 and the orbit is a circle,

- o

for Eg <E <0, O<e <1 and the orbit is an ellipse,
for E=0, e = 1 and the orbit is a parabola,
and for 0 <E, 1 <e and the orbit is a hyperbola.

Let us first consider the bound orbits E < 0, those for which the particle is confined
to a finite region of space. We show that the above equation with 0 <e <1 represents an
ellipse (clearly, the special case e = 0 represents a circle). As the old geometry books put
it, an ellipse is the locus of all points for which the sum of the distances to two fixed points
is a constant. The two fixed points are called the foci of the ellipse. The sum of the
distances is the major axis of the ellipse. We denote it by 2a, so a is the semi-major axis.
The ratio of the distance between the foci to the major axis is the eccentricity e of the
ellipse.
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particle

————— pericenter

Fig. 1.10. Ellipti~ orbit

If we apply the trigonometric cosine law to the triangle in Fig. 1.10, we find

(2a - r)2 =12 +4ea? + 4earcosa,

which, on rearranging, givcs the polar form of the equation of an ellipse, as above, with

semi-latus-rectum p = a(1-¢2). Applied to the solar system, this is Kepler's first law’
of planetary motion: the planets travel around the sun on an elliptical orbit with the sun at
one focus.

The semi-major axis of the ellipse can be expressed in terms of the energy and
angular momentum,

2 2148 k. k

== o -——

SO 4a=— T
mk mk? 2IE 2a

The semi-major axis depends only on the energy, not on the angular momentum;
alternatively, the energy depends only on the semi-major axis, not on the eccentricity.

Let us now turn our attention to the time dependence of the variables. According to
Kepler's second law, the rate at which the radius vector sweeps out area is

dA L 1
da_ L Lk o
dt 2m 2VYm

The time required to complete one orbit, the period <, is the time to sweep out the
complete area

A = mab = a2Vl -c?

gncloscd by the ellipse (here b = a1~ ¢? is the semi-minor axis of the ellipse). It is given
y
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navl-e 1
T 2¥m

T = Zn\[ia%.
k

For the family of planets orbiting the sun, k/m = GM where M is the mass of the sun.

Thus, the period of a planet is proportional to the 34 power of the semi-major axis of the - -
planet's orbit; it does not depend on the mass of the planet cr the eccentricity of the orbit.
This is Kepler's third law of planetary motiond" See Fig, 1.11 and note that the slope
of the log-log plotis %.

which, on simplifying, yields

3 -
- Pluto
2 4 Neptune
—~ Uranus .
~§J Halley's comet
@ 1S (e =0.967)
=)
0
Mercury
-1 ;
0

Pnd g

[
—
o~

log(a/ag)
Fig. 1.11. Kepler's third law

Kepler's second law, plus some, geometry, can also give the way the particle moves
around the orbit as a function of timeR- However, for modern readers more familiar with
calculus than with geometry, it is probably easier to obtain this by integrating the equation
for radial motion

2
lmfz«ru--g-'—T—}i--E.
2mr r

40One sometimes sees a "corrected” version in which GM is replaced by G(M+m). This comes from
treating the situation as a two-body problem involving the sun and the planet under consideration. But the
solar system is a many bedy problen, and the solar motions which lead to "corrections” of this type are the
result of the interaction of the sun not only with the planet under consideration but with all the planets. A
proper treatment would have to take all these into account.

58.e, for example, Forest Ray Moulion, An Introduction to Celestial Mechanics, (Macmillan, New York,
NY, 1902, 1914, 1923), 2nd ed., p.159.
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This can be rearranged in the form

T
dr - df=1,—g—(t—-t0).
k L2 métey m
A E+—— 5
o r 2mr

If the energy E and angular momentum L, are expressed in terms of the semi-major axis a
and eccentricity e, the left-hand side becomes

,2_2_1_ J ' rdr
K fag-e) ;}azzf —(r-a)’

Here we have also chosen ry as the pericenter radius a(l-e); to is then the time of
passage of pericenter. The integration is readily performed by seiting

r-a=-eacosy and dr=easinydy

where 1 is a new variable called the eccentric anomaly, whose geometric significance
can be seen from Fig. 1.12.

circle .
acosy =ea+ rcosa

=(a-r)le

ellipse

particle

geometric center focus of éllipse
of ellipse and circle  (force center)

Fig. 1.12. Eccentric anomaly v

The integration then becomes
2a W% 2a .
\f—;—aﬁ] (1-ecosy)dy = \j'—;:a(xp —esiny),
and we find

r
~=]1~ecosy
a
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with
P -esiny = 2'—:E(t - tg)
T

where T is the period of the motion. This last equation is known as Kepler's equation;
it is a relation between the eccentric anomaly ¥ and the time t, or the so-called mean
anomaly (2x/t)(t - tg). Finally, the relation between the eccentric anomaly ¢ and the

true anomaly (6 — 8;) can be found by eliminating r/a between the above r- equation and
the orbit equation, to obtain

1-e?

l=ecost = e,
Y 1+ecos(0-0g)

In principle, the determination of the motion is now complete. If, however, we wantr and

0 in terms of the time, as is often the case, we must first invert Kepler's equation to get ¢
in terms of the time. This is in general difficult. In cases in which the eccentricity e of the
orbit is small, however, expansions in powers of e are adequate. We use this approach in
the next section to determine the parameters of earth's orbit.

1 . u‘ # .{1
Parameters of earth's orbit i v

+ /‘k"'/

7

The earth's orbit around the sun lies in the plane of the eclj tic, which is marked
by the apparent path of the sun through the corstellations of the godlac over the course of a

year. The plane of the earth's equator makes an angle of approximately 23° with the plane
of the ecliptic, and the intersection of these two planes gives a direction in space. In
September of each year the sun passes through the plane of the earth's equator going from
north to south. This is known s the autumnal equinox (AE). The direction from sun

to earth at this time provides 4 convenient reference (the first point of Aries) from i

which to measure the angle 0, so at autumnal equinox 8 = 0. As the year progresses, the
miuday sun (in the northern hemisphere) moves lower and lower in the sky, until at
8 = /2, the winter solstice (WS) in December, it reaches its lowest point. The sun

then moves higher in the sky and at 0 = x, the vernal equinox (VE) in March, the sun
again passes through the iplane of the earth's equator, this time going from south to north.
The first point of Aries is thus aiso the direction from earth to sun at the vernal equinox.
The sun continues to move higher in the sky, and at 6 = 3x/2, the summer solstice (SS)
in June, the midday sun feaches its highest point. See Fig. 1.13. (:’1 1)

i ™o

2%

i ; ‘
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Fig. 1.13. Earth's orbit

Table I. Equinoxes, solstices, and seasons for 1994 - 1995

Equinoxes and solstices

Date Day
(see 1) (see 2) (see 3)
AE (94) 23 Sept. 01:19 266.0549
89.8361
WS (94) 21 Dec. 21:23 355.8910
. 88.9938
VE(©5) 20Mar. 21:14 4448847 -
92.7639
SS (95) 21 June 15:34 337.6486
93.6521

AE (95) 23 Sept. 07:13  631.3007

1. Times in EST ('7]) f&?%"”éi@
2. 1 Jan. 1994 0:00 h = 1.0000
3. In days

4. In fractions of the year [AE (94) to AE (95)] = 365.2458 days

Seasons

(see 4)

0.245961
0.243654
0.253977
0.256408

Aptumn
Winter
Spring

Summer
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We wish to use the "observed" times of these seasonal cvcnt‘@to find the
parameters of earth's orbit: the eccentricity e which determines the shape of the ellipse, the

angle O of perihelion which determines the orientation of the ellipse in the plane of the
ecliptic, and the time 1, of passage of perihelion. The last equation of the previous section

gives the relation between the eccentric anomaly ¥ and the true anomaly 8 - 85. Expanding
the right-hand side of this as a power series in the eccentricity, we find

cosy = cos(e - 90) + csin2(8 - 80) ~e? cos(ﬁ - Bo)sinz(e ~ Bo)+-~-

which yields

6A convenient and inexpensive source of dala is The Old Farmer's Almanac, (Yankee Publisbing Inc.,
Dublin, NH). A more conventional source is The Astronomical Almanac, (US Government Printing

Office, Washiagton, DC).
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P = (8= 8) - esin(@ -0g) + Lesin2(0 - 0g)+ .

This, when substituted into Kepler's equation, then gives the relation between the observed
quantities, the true anomaly and the time (in years),

(8-8g) - 2esin(8 - p) + 2e?sin2(8 - B)++++= 2m(t - to).
Setting 6 = 0 at autumnal equinox, 8 = xt/2 at winter solstice, 6 = 7 at vernal equinox,
and 0 = 3xn/2 at summer solstice, we obtain the four equations

-8p + 2esinby - %62

Sin290+' oo 2n([AE - to)
Z_§, - 2ecoslg + 3 e’ sin28p+ = 2n(tws - to)
n-0~2esinby ~ %ezsin280+---= 2r(tyg - to)

3% _ 8y +2ecos8y + 2e”sin20+ = 2au(tss - 1) -

These can be combined to give
z(aisin B = %— (tyg —tag) = -;—— (Autumn + Winter)
n

- —2;500380 = —% —(tgs = tws) = —;— - (Winter + Spring)
20, 3

4tg =tag +twg T tyg +lgg + ———
r 2

2
e’ . .
o+ 2—sm280 = lwg = LAE + lss — tyg = Autumn + Spring .
T

L

The first two equations give the eccentricity and angle of perihelion; the third gives the time
of perihelion; and the fourth is a check on the consistency of the data with the assumption
of a Keplerian orbit. In particular, using the data in Table I we find

28 §inBg = 0.010385
14

28 cosB, = 0.002369
n

which yield e = 0.016732 and 6, = 102.85°. The third equation then gives
4ty = 1604.4792 + (2 x 102.85/180 ~ 1.5) x 365.2458

which yields t, = 368.50 = 3 Januvary 1995, 12h. Finally, the fourth equation gives
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0.499942 = 0.499937.

The equations we have been using are good to order e?; corrections of order

e =4.7x107% are expected to modify the results by a few parts in the last figure quoted.

The uncertainty in the input times (assumed to be zlminute = £1.9x1078 year) also
affects the last figure.

The agreement with the almanac values e=0.01673=0.00002 and
0, = 102.87°+0.08°, where the = indicates the variation over the course of the year due to
various perturbations, is excellent. However, our predicted tq is 18 hours early. The
reason for this is interesting. We have actually been ca'culating the parameters of the earth-
moon barycenter; in particular, our tg is the time of barycenter perihelion. What is listed in
almanacs, however, is the time of earth perihelion. These differ by approximately 1.3sin¢

days, where ¢ is the (angular) phase of the moon near perihelion. In 1995 perihelion

occurred about a third the way through the first quarter of the moon, so ¢ ~30° and the
correction to our result is approximately +16 hours, as required.

Scattering

One of the primary ways for exploring the nuclear and sub-nuclear world is via

scattering experiments. A beam of particles, such as electrons, protons, or a-particles, is
directed at a thin target which contains the nucleus to be studied. The particles in the beam
interact with the target nuclei and are scattered. A detector counts the number of particles
per unit time scattered in various directions (Fig. 1.14(a)). This number is proportional to
the (small) cross-sectional area AA of the detector and is inversely proportional to the
square of the distance R from the target to the detector. That is, the number An of counts

per unit time is proportional to the solid angle AQ = AA/ R? subtended by the detector.
Further, it is proportional to the intensity I of the incident beam (the number of incident
particles per unit area per unit time) and to the number N of target nuclei in the path of the
beam. To obtain a quantity from which these details of the experimental arrangement have
been removed, we divide the number of counts per unit time by the solid angle subtended
by the detector, by the intensity of the incident beam, and by the number of target nuclei.
The resulting quantity,

do 1 dn

dQ  NIdQ’

is called the differential scattering cross section. It has units of "area™
Ao = (do/dQ)AQ is the area an incident particle must strike, per target nucleus, in order to

scatter into the solid angle AQ.
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Detector

Incident beam Incident particle
Target
(a) ®) Target nucteus

-

Fig. 1.14. Scauering (a) macroscopic view, (b) microscopic view

For thin targets the scattering of an incident particle is the result of a single collision
between it and an individual target nucleus. We wish to relate the differential scattering
cross section to this individual scattering process. The proper way to do this is to use
quantum mechanics. It is nevertheless of interest to see how one approaches such a
problem using classical mechanics, if only to introduce general ideas and to provide results
which can then be compared with the quantum mechanical results. When the incident
particle is far from the target nucleus, the force exerted on it by the target nucleus is small,
and the particle moves along an incoming asymptotic straight line (Fig. 1.14(b)). If
extended, this straight line would pass by the target nucleus with distance of closest
approach b. This distance b is called the impact parameter. It is related to the (constant)
angular momentum L and energy E of the incident particle by

L = mv,b=bv2mE.

As a result of its interaction with the target nucleus, the incident particle is deflected from its
original path, eventually emerging from the interaction region along an outgoing asymptotic

straight line which makes an angle © (0 = @ = n) with the incident direction. This angle e

is called the scattering angle. It is a (single-valued) function A(b,E) of the impact
parameter b and particle energy E. If we choose a spherical polar coordinate system with
origin at the target and polar axis in the direction of the incident beam, the scattering angle

© is the polar angle of the scatiered particle. The azimuthal angle ¢ of the particle does not
change (except possibly by x). The number of particles per unit time incident with tmpact
parameter in the range b to b +db and with azimuthal angle in the range ¢ to ¢ +d¢ is
dn = Ibdbdé. These particles scatter into the specific polar angle range © to © +d©

where @ is determined by b, and into the azimuthal angle range ¢ (+7) to ¢+ dd (+70).
The solid angle which they subtend is thus dQ = sin@ded¢. Substituting these results
into the above definition of the differential scattering cross section then gives



Coulomb scattering 21

do b foo
dQ sin®[dC|
In writing this down we have assumed that the relationship between impact parameter and
scattering angle (at fixed energy) is one to one. For some interactions this may not be the

case, with more than one impact parameter yielding the same scattering angle. In such
situations the above should be replaced by an appropriate sum.’,*

Coulomb scattering

The scattering of a low energy incident charged particle by a nucleus is largely the
result of the electrostatic Coulomb force between it and the nucleus. We have seen that the

orbit for a particle moving in a Coulomb potential V = ~k/r (with k = -q;q; where q,
and q are the electric charges of the incident and target particles) is a conic section

-E-l+ecose
r

where p = 1?/mk is the semi-latus-rectum and e = \/ 1+ 2L2E/ mk? - 1/1 +(2bE/k)2 is
the eccentricity. Also, for convenience we have here taken pericenter in the direction 8 = 0

for an attractive force (unlike charges), or in the direction 8 = x for a repulsive force (like
charges). See Fig. 1.15. -

repulsive attractive

Fig. 1.15. Coulomb scattering

7For some of the things that can happen then see: Roger G. Newton, Scattering Theory of Waves and
Particles, McGraw-Hill Book Company, New York, NY, 15966), pp. 129-134; Herbert Goldstein, Ciassical
Mechanics, (Addison-Wesley Publishing Company, Reading, MA, 1980), 2nd. ed., pp. 110-113.
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For E positive, ¢ is greater than one, and the orbit is a hyperbola. Far from the nucleus
(r— ®) the incident particle travels along incoming or outgoing asymptotic straight lines,
with directions 8, where

8, = cos™H(-1/e) (7258, < ).

Note that these directions are the same (apart from sign) for both attractive and repulsive
Coulomb scattering. The scattering angle is given by

0=20,-m.

This, combined with the previous equations, yields the relation between the impact
parameter and the scattering angle

b= l—klcotg.
2E 2

The scattering angle © is a monotonely decreasing function of the impact parameter b,

decreasing from @ =« at b=0 to © =0 as b—o. The differential scattering cross
section follows from previous considerations and is given by

) =(3)

This is the famous Rutherford scattering cross section, first derived and used by

Emest Rutherford to interpret the experiments of Geiger and Marsden on a-particle
scattering from thin metal foils. It led him to the discovery of the nuclear atom. As has
already been pointed out, this is really a quantum mechanical problem. Fortunately for the
development of atomic physics, however, in this instance classical mechanics, more by
accident than anything, leads to the same result as quantum mechanics:8.}

Exercises

1. A particle of mass m moves in one dimension x in a potential well
V = V, tan? (x/2a)
where V, and a are constants. Find, for given total energy E, the position x as a

function of time and the period v of the motion. In particular, examine and interpret
the low energy (E << V) and high energy (E >> V) limits of your expressions.

8See, for example: Kurt Gotifried, Quantum Mechanics: Volume I, (W. A. Benjamin, New York, NY,
1966), pp. 148-153; Gordon Baym, Leciures on Quantum Mechanics, (W. A, Benjamin, Reading, MA,
1969, 1973), pp. 213-224; 1. J. Sakurai, Modern Quantum Mec: ~nics, (Addison-Wesley, Redwood City,
CA, 1985), ed. San Fu Tuan, pp. 434-444. .
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For each of the following central potentials V(r) sketch the effective potential
2

Veff(l') = 2mr2 + V(r},
and use¢ your sketch to classify and draw qualitative pictures of the possible orbits.
@ V(@) =tk? 3D isotropic harmonic oscillator

(b) Y({@)=-V, for r<a square well
V(r)=0 for r>a

© V- -?"2—
@  VO--%
-Qr
(e) V()= -k ¢ Yukawa potential

r
Note that the qualitative shape of V4 (r) versus r may depend on L and on the
various parameters; consider all cases (but assume that the given parameters are
positive).

The first U.S. satellite to go into orbit, Explorer I, which was launched on January
31, 1958, had a perigee of 360 kn and an apogee of 2549 km above the earth’s
surface. Find: ‘

(a) the semi-major axis, -

(b) the eccentricity, -

(c) the period,

of Explorer I ‘s orbit. The earth's equatorial radius is 6378 km and the acceleration

due to gravity at the earth's surface is g = 9.81m/s?.

Mars travels on an approximately elliptical orbit around the Sun. Its minimum
distance from the Sun is about 1.38 AU and its maximum distance is about 1.67
AU (1 AU = mean distance from Earth to Sun). Find:

(a) the semi-major axis,

(b) the eccentricity,

(c) the period,

of Mars' orbit.

The most economical method of traveling from one planet to another, the
Hohmann transfer, consists of moving along a (Sun-controlled) elliptical path
which is tangent to the (approximately) circular orbits of the two planets, Consider
a Hohmann transfer from Earth (orbit radius 1.00 AU) to Venus (orbit radius 0.72
AU). Find, in units of AU and year:

(a) the semi-major axis of the transfer orbit,

(b) the time required to go from Earth to Venus,

(c) the velocity "kick" needed to place a spacecraft in Earth orbit into the transfer
orbit.

In this problem ignore the effects of the gravitational fields of Earth and Venus on
the spacecraft.
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Halley's comet travels around the Sun on an approximately elliptical orbit of
eccentricity e = 0.967 and period 76 years. Find:

(a) the semi-major axis of the orbit (Ans. 17.9 AU),

(b) the distance of closest approach of Halley's comet to the Sun (Ans. 0.59 AU),
(c) the time per orbit that Halley's comet spends within 1 AU of the Sun (Ans. 78
days).

Define a "season” as a time interval over which the true anomaly increases by /2.
Find the duration of the shortest szason for earth. Take the eccentricity of earth’s
orbit to be 0.0167.

A satellite of mass m moves in a circular orbit of radius ag around the earth.

(a) A rocket on the satellite fires a burst radially, and as a result the satellite
acquires, essentially instantaneously, a radial velocity u in addition to its angular
velocity. Find the semi-major axis, the eccentricity, and the orientation of the
elliptical orbit into which the satellite is thrown.

(b) Repeat (a), if instead the rocket fires a burst tangentially.

(c) In both cases find the velocity kick required to throw the satellite into a parabolic
orbit,

Show that the following ancient picture of planetary motion (in heliocentric terms)
is in accord with Kepler's picture, if the eccentricity e is small and terms of order e?
and higher are neglected:

(a) the earth moves around the sun in a circular orbit of radius a; however, the sun
is not at the center of this circle, but is displaced from the center by a distance ea;

(b) the earth does not move uniformly around the circle; however, a radius vector
from a point which is on a line from the sun to the center, the same distance from
and on the opposite side of the center as the sun, to the earth does rotate uniformly.

(a) Show that

2r
20 2 1+cosH
r

(the standard form for a conic section, on setting the eccentricity e = 1 and the semi-
latus-rectum p = 2rg) is the equation of a parabola, by translating it into cartesian
coordinates with the origin at the focus and the x-axis through pericenter.

(b) A comet travels around the Sun on a parabolic orbit. Show that the distance r of
the comet from the Sun is related to the time t from perihelion by

2
lé’;(r+2r0) r—Ig=2at

where distances are measured in AU and time is measured in years.

(c) If one approximates the orbit of Halley's comet near the Sun by a parabola with
1 = 0.59 AU, what dogs this give for the time Halley's comet spends within 1 AU
of the Sun?

(d) What is the maximum time & comet on a parabolic orbit may spend within 1 AU
of the Sun?
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A particle of mass m moves in a central force field F = -(k/ r2)f.
(a) By integrating Newton's second law dp/dt = F, show that the momentum of

the particle is given by p = py + (mk/ L)0, where pg is a constant vector and L is
the magnitude of the angular momentum.

(b) Hence show that the orbit in momentum space (the so-called hodograph) is a
circle. Where is the center and what is the radius of the circle? '

(c) Show that the magnitude of pg is (mk/L)e, where e is the eccentricity. Sketch
the orbit in momentum space for the various cases, e =0, O<e<1, e=1, e>1,
indicating for the last two cases which part of the circle is relevant.

(See: Armold Sommerfeld, Mechanics, (Acader .ic Press, New York, NY , 1952),
trans. Martin Q. Stern, p. 33, 40, 242; Harold Abelson, Andrea diSessa, and Lee
Rudolph, "Velocity space and the geometry of planetary orbits,” Am. J. Phys. 43,
579-589 (1975).)

Consider the motion of a particle in a central force field with potential V = ~k/r.
Since the force is central, the angular momentum L = r x p is constant and the orbit
lies in a plane passing through the force center and perpendicular to L.
(a) Show that for the particular potential V = ~k/r there exists an additional vector
quantity which is constant, the Laplace-Runge-Lenz vector

K =pxL - mkr.
Further show that K-L = 0, so that K and L are perpendicular and thus K lies in
the orbital plane. (Hint: if you've done exercise 1.11, you need only show that
K =pgxL). i

(b) By taking the dot product of K with T obtain the equation of the orbit

2
a—(l—L)= 1 +ecosH.

r
Hence find a and ¢ in terms of K and L, and also find the direction that K points in
the orbital plane.

2
i

(c) Express the energy E = 21— _k interms of K and L,
m r

Consider the motion of a particle of mass m in a central force field with potential

V= _k + —}—1—
rorf
(a) Show that the equation for the orbit can be put in the form
a(l-¢%)
——==l+ecosdf,
r

and find g, €, and « in terms of the energy E and angular momentum L of the
particle, and the parameters k and h of the potential.

(b) Show that this represents a precessing ellipse, and derive an expression for the
average rate of precession in terms of the dimensionless quantity 1 = hfka.

(c) The perihelion of Mercury precesses at the rate of 40” of arc per century, after

all known planetary perturbations are taken into account. What value of 7 would
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lead to this result? The eccentricity of Mercury's urbit is 0.206 and its period is
0.24 years.

A particle of mass m moves in a 3D isotropic harmonic oscillator potential well
V= %muuzr2

where w, the angular frequency, is a constant.
(a) Show that the equaticn for the orbit has the form

2} w?L?

— =144/~ cos2(0 -0

mE r? E? ( o)
where E is the energy and L is the angular momentum.
(b) Show that this represents an ellipse with geometric center at the force center,
and express the energy and angular momentum in terms of the semi-major axis a

and eccentricity e of the ellipse. (Ans. E = muuz(a2 + b2) and L = mwab where
b=ayl-e? is the semi-minor axis)

(c) Show that the period is T =2n/w independent of the energy and angular
momentum, and that the radius is given as a function of time by

272
2 E w L
r° = 1-41- cos2w(t —ty)].
mmz[ E? ( 0)}

A small meteor approaches the earth with impact parameter b and velocity v, at
infinity. Show that the meteor will strike the earth if

b<a 1+(vo/va,)2

where a is the radius and v is the "escape velocity" for the earth.

(a) Find the relation between the scattering angle © and the impact parameter b for
scattering from a hard sphere of radius a (for which "angle of incidence = angle of
reflection").

(b) Use your result to obtain the differential scattering cross section do/d<2.
Integrate to find the total scattering cross section cuf(dcr/dQ)dQ, where
the integration extends over the whole solid angle.
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(a) Show that a particle of energy E is refracted in going from a region in which the
potential is zero to a region in which the potential is -V, the angle of incidence 0,
and the angle of refraction 6, being related by Snell's law :
sin 60
. - n
sinB;
where angles are measured from the normal and n =+/1+ V,/E is the index of
refraction.
(b) Use Snell's law to show that a particle incident at impact parameter b on an
attractive square well potental
V(x)=-V, for r<a
“V(x)=0 for r>a
is scattered through an angle © given by
_li n sin? 0/2
a® n%+1-2ncos©/2’
In particular, show that for small impact parameters (b << a) the scattered particles

are brought to a focus a distance f = (—n—l) (-;—) from the force center,
n -—

(c) Find the differential scattering cross section do/dQ.

(a) Show that )

20 - cosab
is the equation of the orbit for ; particle moving in a repulsive potential
V(r) = k/r?, determining a and rg in terms of the energy and angular momentum.

2mk al
Ans. @ = 1+ ———, 1y = —mr—
¢ V' " omE

(b) Show that the impact parameter b and scatiering angle © are related by
b? = .li_(_n____@z__
EO(2xn-0)
(c) Show that the differential scattering cross section is given by
do <k x-8
dQ ~ Esin® @%(2x- 0)°




CHAPTER 1I

THE PRINCIPLE OF VIRTUAL WORK
AND D'ALEMBERT'S PRINCIPLE

In the previous chapter we saw how Newton's laws could be used directly to solve
some simple mechanical problems involving point particles. We now turn to more general
mechanical systems. We shall see that for most mechanical systems Newton's laws are
incomplete and must be supplemented by additional conditions. Thege are contained in the
principle of virtual work which is the subject of the present chapter! #

Constraints (/¢ 1;’5\%}/\)“11 )

We begin by writing down Newton's second law as applied to a system of N
particles,

m;r; = F; 1=12,--N.
At first it might appear that all we have to do is to integrate this coupled set of 3N equations
to obtain the 3N coordinates r, as functions of time. We soon discover, however, apart
from the fact that the integration is unfeasible in most situations, that this set of equations is
incomplete. There is more to mechanics than Newton's second law. In particular, the
coordinates might be related or restricted by constraints. For example:

(a) The particles might be required to move on certain surfaces or curves, as for a
block sliding on an inclined plane, or for a plane pendulum (Fig. 2.01).

Y Y
X
/
X
The block moves on the The bob moves on the
surface y = ax+ b curve x2 +y* =¢2,2=0

Fig. 2.01. Typical constraints

LFor parallel reading see: Robert A. Becker, Introduction to Theoretical Mechanics, (McGraw-Hill Book
Company, New York, NY, 1954), pp. 97-107; Comelius Lanczos, The Variational Principles of
Mechanics, (University of Toronte Press, Toronto, Oat., 1970; rep blished by Dover Publications, New
York, NY, 1986), 4th ed., pp. 74-110; Arnold Sommerfeld, Mechanics, (Academic Press, New York, NY,
1952), trans. Martin O. Stern, pp. 48-66.
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(b) The particles might be connected by "light rigid rods" so that the distances
between them remain constant,

ll"l -rjl=a-u-,

as for the particles which make up a rigid body.
Constraints such as these which can be expressed as a set of equations of the form

G(ry,ry,-,ry;t) =0 =12, 3N-f

are called holonomic constraints. The integer "f" is the number of degrees of freedom
of the system. Other (non-holonomic) types of constraint, such as "particles confined to
the interior of a box" or "wheel rolling over a surface,” are difficult to handle in a general
way and are not considered here.

Constraints have two effects:

1. The 3N coordinates r; = (x;,y;,z;} are not all independent. For a system with f
degrees of freedom there are only f independent coordinates,

2. There are forces of constraint Fi©™U*") which the constraining surfaces,
curves, rods, etc. exert on the particles so that they move in conformity with the
constraints. These are initially unknown and mu.. be found as part of the solution to the
problem. If we call all the other forces applied forces and denote them by F{*PPied) ihe

3N equations arising from Newton's second law take the form
o (applied) (conslrain]) s
mi; = F;PPeY 4 i=12,--- N,

Together with the equations of constraint, these give a total of 6N — f equations for the 6N

unknowns r; and F{™%)  Thyg at the moment we do not have sufficient information

to solve the dynamical problem and must impose further conditions. In order to discover
what these might be, let us look at some elementary examples where this situation occurs
and see what we do in those cases.

Principle of virtual work

First consider a block sliding on 4 frictionless incline near the surface of the earth
(Fig. 2.02).

N
7 Y

Fig. 2.02. Block on an incline
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The block is subject to two forces: the force mg gravity exerts on the block, an applied
force, and the force N the incline exerts on the block, a force of constraint. If we think of
ihis as a problem in two dimensions, there are four unknowns x, ¥» Ny Ny. To find
these, we have two equations from Newton's second law and one equation of constraint.
The necessary fourth equation is the statement that N is perpendicular to the incline. We
now wish to say this in a way which can be applied to a wide variety of situations. For this
purpose we observe that another way to obtain the same result is to say that the force of
constraint, being perpendicular to the displacement, does no work. We shall see that this
idea, suitably extended, leads to the general additional condition we must impose on a
mechanical system so as to make a well-set problem.

Next consider two particles connected by a light rigid rod and possibly subjected to

external forces (Fig. 2.03).
Z F F 2

m, 1 2 m,
Fig. 2.03. Two interacting particles

We want to find the coordinates r|, r, of the particles and the constraint forces F,, F, the
rod exerts on them, twelve unknowns in all. We have six equations from Newton's
second law and one constraint equation. The remaining necessary equations are

F, =-F, (3 equations),

the force the rod exerts on panticle 1 is equal and opposite the force it exerts on particle 2,
and

“the forces are directed along a line joining the two particles” (2 equations).

How are we to summarize conveniently these requirements? We observe that for any
displacement of the system, while the forces of constraint F; and F, may do work
individually, the net work

OW = Fl '6!"1 +F2'6r2

done by all the forces of constraint is again zero. To see this, note that the displacements
are of two types: translations, for which 8ry = 8r,, and &7 = 0 because F, =-F, and
the work done by F is equal and opposite the work done by F,; and rotations, for which
the displacements are perpendicular to the line joining the two particles, and the work done
by F, and F, are each zero because the forces lie along the line Jjoining the two particles.
Further, by reversing the argument we can obtain the preceding five conditions on the
forces of constraint from the stawment about work; they are equivalent,

As we continue to examing a wide variety of situations, we may be tempted to
summarize our observations by saying "the net work done by forces of constraint is zero,"
but this is not quite true. Forces of constraint can do work if the constraint is time-
dependent, if the incline in the first example is moving or the length of the rod in the second
example is changing. Consider Fig. 2.04,
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surface at time t + dt

surface at time t

Fig. 2.04. Real and virtual displacements for a time-varying constraint

which shows a particle constrained to a surface. If the surface moves in the time interval t

to t + dt, the real displacement dr of the particle has a component normal to the surface, in
the direction of the force of constraint, so the force of constraint in this situation can do
work. Thus in order to apply our work idea we must modify our prescription as follows:
JSreeze the system at some instant of time t ; then imagine the particles displaced amounts

8r; consistent with the conditions of constraint. This is called a virtual displacement.
We use Br; rather than dr; to distinguish virtual displacements from real displacements.

We then apply our work idea not to real displacements but to virtual displacements, stating
the result as follows:

The principle o_f virtual work

The total work done by the forces of constraint-in a virtual displacement is zero,

o N . ~ 1 o
Sy (constraint) 2 Fi(conslramt) -8r; = 0, (rk?mz,“ ,(m )
“ (S R

We have not given a "proof” of the principle of virtual work, but rather an
indication of some types of situation in which the principle holds. Readers will have to
judge from physical considerations whether and in what sense the principle holds for the
particular physical system they wish to consider. The principle is in a sense a statement
about what forces we can consider "forces of constraint," and it summarizes their

properties. Forces which do not satisfy the principle must be considered "applied forces."
As we now show, the principle of virtual work provides the additional f equations

needed, besides the 3N from Newton's second law and the 3N - f equations of constraint,
to complete the specification of the dynamical problem. First suppose that there are no

constraints. Then all the 8r;'s are independent, and the only way SW (OBSIRIn oop pe ooy

for all dr; is if F{™™i _ ¢ these 3N equations say, correctly, that in this case there are
no forces of constraint. Now suppose that there is one constraint. The coordinates are
then connected by one equation of the form

G(ry,ry, ) =0,
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and the number of degrees of freedom is 3N —1. Thatis, 3N -1 of the r; = (x;,y;,2;) are
independent, and 1 is dependent. If we express this one dependeat variable in terms of the
(ind)

i the principle of virtual work gives

independent variables x

3N-1

N
E EFgconsuaim). 6‘1'1 \6x(ind) =0
=1 \ L 6x(-‘"d)J . ‘
Jml A= J

The coefficient of each of the 6.'ji"d) must vanish, giving 3N -1 restrictions on the

Fgw“sm‘)'s, as required. Itis clear that this argument can be easily generalized to the case

where there are 3N ~ f equations of constraint and f independent variables. Each time we
add a constraint equation we reduce the number of degrees of freedom, the number of
i..dependent variables, by cne and hence reduce the number of conditions on the
F{©™) by one; the number of constraint equations plus conditions on the p{constramt)

remains fixed at 3N. To summarize, the principle of virtual work provides the additional
equations needed to make a well-set mechanical problem.

D'Alembert's principle and generalized coordinates

Quite often we are not interested in the forces of constraint themselves. We can
then use Newton's second law to eliminate them from the remaining equations, setting

~(constrant) . (applied)}
I i = mi['i - Fi

in the principle of virtual work. We are left with

N ,
E(Fgapphed) - mii‘i)'éri =0.

1=]1

This is d'Alembert's principle. It says that the work done by the applied forces, plus
the work done by the so-called inertial forces —m;F;, in a virtual displacement is zero.
In spite of its simple appearance, d'Alembert's principle is extremely important. Together
with the equations of constraint, it contains Newton's second law as well as the necessary
conditions on the forces of constraint. It forms the basis for all our further developments in
mechanics.

Rather than using a set of 3N non-independent variables r; which are connected by
the 3N—f equations of constraint, it is more convenient to use a set of f (s3N)
independent variables q, (a =1,2,---,f), the generalized coordinates, to describe the
configuration of the system. We have great freedom in the choice of these coordinates.
Essentially any set of f independent variables from which the r; can be obtained by
equations of the form
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r; =r;(q,q0, G550 {=12,+N

will serve. See, for example, Fig. 2.05.

y
S y

h AN

AN

o
!
X

(a) For the block on an inclined plane (b) For the plane pendulum
the horizontal coordinate x the horizontal coordinate x
or the vertical coordinate y or the vertical coordinate y
or the distance s down the plane or the angle 6
would all serve as the : would all serve as the
generalized coordinate. In terms generalized coordinate. In terms
of the latter variable of the latter variable
the cartesian coordinates are the cartesian coordinates are
X=scosa y=h-ssina '~ x=/¢sinB y=-£cosB

Fig. 2.05. Typical generélizcd coordinates

Once we have introduced generalized coordinates for a system, the dynamics is completely
contained in d'Alembert's principle. Let us see how to use it for some simple problems in
mechanics.

Lever

A (horizontal) lever is in static equilibrium under the application of (vertical) forces
F, a distance £, from the fulcrum, and F; a distance ¢, from the fulcrum, as shown in
Fig. 2.06. 3

a y

gl& 25

Fig. 2.06. Lever

What is the condition on these quantities for equilibrium to obtain? Although the answer is
well-known to any child who has experimented with a teeter-totter, obtaining it via
d'Alembert's principle is instructive. To do this, imagine the lever to undergo a virtual
displacement, a (say) clockwise rotation about its fulcrum through an infinitesimal angle
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8. End 1 moves up a distance £,00 and the applied force F; does work ~F;£,66; end 2

moves down a distance £,80 and the applied force F, does work +F,£,08. In this
problem of static equilibrium there are no inertial forces, so d'Alembert's principle yields

—Flflﬁe + erzée - O,
which gives the well-known condition

Fié) = Fyl;.

Inclined plane

A block of mass m slides on an inclined plane under the influence of gravity. We
take as generalized coordinate the displacement s down the plane (Fig. 2.07).

Fig. 2.07. Inclined plane

What is the equation of motion? To apply d'Alembert’s principle, imagine that the block
undergoes a virtual displacement ds down the plane. The applied force, gravity, does
work mgsinads. The acceleration of the block down the plane is §, so the inertial force

onitis ms§ up the plane, and the work done by the inertial force is —~mSds. D'Alembert's
principle then says

mgsinads - m§ds = 0,
which yields the well-known result

§=gsina.

Plane pendulum

- .
A bob of mass m is suspended from the ceiling by a string*%f length £ and can
swing back and forth in a vertical plane under the influence of gravity g. The system has

2Although the word "string” is used here and in other similar situations throughout the text, the phrase
"light rigid rod" is sometimes meant.
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one degree of freedam, and we can take as generalized coordinate the angular displacement
0 from vertical (Fig. 2.08).

Fig. 2.08. Plane pendulum

What is the equation of motion? To apply d’Alembert's principle, imagine a virtual
displacement in which 0 increases by a small amount 6. The bob rises a distance
£56sin®, and the only applied force, gravity, does work —(mg)(£d8sin8). The
acceleration of the bob in the direction of the virtual displacement is 28, so the work done
by the inertial force is (-m£8)(£80). D'Alembert’s principle then gives

(~mg)(£88sin8) - (m£B)(£68) = 0,
which simplifies to
6 = —(g/£)sind.
This is the required equation of motion.

Now suppose that the length of the supporting string is time-dependent; perhaps it
is expanding and contracting with changes in temperature. A virtual displacement at time t

is the same as before, a distance £(1)80 in the 8-direction, so the work done by gravity is
the same. But now the acceleration of the bob has a component 26+ 226 in the 6-

direction, so the work done by the inertial force is -m(¢6 +2£0)¢58. D'Alembert's
principle gives

~(mg)(£8sinB) — m(¢6 + 2£6)£86 = 0,
‘which yields

d 2 .
—(mé°B) = -mglsinb.
g ey = —mglsin

The quantity mé%0 is the angular momentum of the bob about the point of support. If
g = 0, in which case the plane pendulum becomes a plane rotator, it remains constant even
if £ changes with time (in contrast to, say, the kinetic energy).



36 Chapier I1: Principle of Virtual Work

Another way in which the length of the pendulum could change with time would be
for the string to pass through a small hole in the ceiling and be acted on by a force F (Fig.
2.09).

Ar

|
AN

! m

Fig. 2.09. Plane pendulum with time-varying length

The system now has nwvo degrees of freedom, and we can take as generalized coordinates

the angle 6 and the length r of the pendulum (replacing £). There are two independent
virtual displacements:

(a) Vary 8, keeping r fixed. This is the same as we had in the previous paragraph,
and d'Alembert’s principle yields in the new notation

d 24 .
= 0) = - 8.
o (mr-0) = -mgrsin

(b) Vary r, keeping 6 fixed. Imagine increasing r an amount dr. The applied force
gravity does work mgdrcost. The applied force F does work —For. The acceleration of

the bob has a component 1 - 6% in the r-direction, so the work done by the inertial force is
—m(f - r6?)ér. D'Alembert's principle gives

mgdrcost — Fér - m(f - rd?)or = 0,
which yields
m(i - §?) = -F+ mgcosh.

For g = 0 these are simply the general equations for motion under a central force F.



Exercises 37

16
I F
| mg

Use d'Alembert's principle to find the condition of static equilibrium.

Exercises

1.

2.
F
mg
Use d'Alembert's principle to find the cohc_ﬁtion of static equilibrium,
3. )
g l
X
my ‘
m,
Use d'Alembert's principle to find the acceleration of my.
4.

|

mj

= S

Use d'Alembert's principle to find the acceleration of m,.
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A

!
i

Use d'Alembert’s principle to find the acceleration of m,. Note that in this case the
pulley has an upward acceleration A. "Acceleration" means "acceleration relative to
the earth."

J :

[ | m

A mass m Is attached to a light cord which wraps around a frictionless pulley of

1

mass M, radius R, and moment of inertia I = {r’dM. Gravity g acts vertically
downwards. Use d'Alembert's principle to find the acceleration of m.

D ¥

a

A cylinder of mass M, radius R, and moment of inertia I = [r2dM rolls without

slipping down an inclined plane. Use d'Alembert's principle to find the
acceleration of the cylinder.
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Jg

Use d'Alembert's principle to find the acceleration of m,; down the (stationary)

plane.
S J g

m

m

a

/]
;-—XSE)-«D— a

A block of mass m slides on a frictionless inclined plane, which is driven so that it
moves horizontally, the displacement of the plane at time t being some known
function x(t). Use d'Alembert's principle to find the equation of motion of the
block, taking as generalized coordinate the displacement s of the block down the
plane. Note that the acceleration of the block is not "down the plane."

A block of mass m slides on a frictionless inclined plane of mass M which in turn is
free to slide on a frictionless horizontal surface. Use d'Alembert’s principle to find
the equations of motion of the block and the plane, taking as generalized
coordinates the displacement s of the block down the plane and the horizontal
displacement x of the plane.



CHAPTER III
LAGRANGE'S EQUATIONS

In the preceding chapter we obtained d'Alembert’s principle and showed how it
could be used to find the equations of motion. This approach is convenient in that the
usually uninteresting forces of constraint do not need to be considered. In this chapter we
extend these ideas and show how, starting from d'Alembert's principle, we can write the
equations of motion for a wide range of mechanical systems, described by arbitrary sets of
generalized coordinates, in an elegant and compact way known as Lagrange's equations.

Lagrange's equations
D'Alembert’s principle says that the work done by the applied forces
. . N -
b\v(uppilcﬂ) _ 2 FSapphcd) '5['-1
1=]
plus the work done by the inertial forces
ertial N
6\an.nu ) z (_mlrl) 'Bri
1=}

in a virtwal displacement dr, is zero.

Let us first consider the work SW PP done by the applied forces. If the 3N
particle coordinates r; are expressed in terms of a setof f generalized coordinates q,,

r; = (45,42, 4030,

the virtual displacements of the particles can be expressed in the form

6ri = Ef: ari 6qa'

aml da

Note that there is no term in this equation coming from "variation in time.” Ina virtual
displacement we imagine the system "frozen” at the time of interest and then imagine
subjecting the system to displacements consistent with the constraints. Time is fixed in a
virtual displacement. The work done by the applied forces can thus be written

(applicd) [ / N (applied) or; \\- N
é\v(‘llusz(Ewa 5#_‘_ o4, -
A Qa
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The expression in brackets,

A ‘ dr,
Qa - 2 Fgapphcd) -.__...i.,
e Q.

is called a generalized force. It may be thought of as the "component” of the force in
the "direction” of the generalized coordinate q,. Note, however, that Q, might not even

have the dimensions of "force”; if, for example, the generalized coordinate is an angle, the
generalized force is typically a torque. With this notation we can write the applied work in
the form

f
aw(applied) - 2 Qa 5(]3 .

a=l
This provides an alternate interpretation of generalized force as "applied work done per unit
generalized displacement.” If the applied forces are all conservative, they can be expressed
as the negative gradients of the total potential energy V(r),r2,+1n;0) of the system,

FURie) _ g,y
The generalized force is then given by
gV
Qa =T
g,

In this case the work done by the applied forces is simply the negative of the change in the
potential energy of the system,

5W(applied) - -8V,

Let us now consider the work W& done by the inertial forces. We shall see
that this can be expressed in terms of the total kinetic energy

A 2
‘ B
T= Eimilril
“~

of the system. Since the particle velocity can be wntien

. dr, . dr;
r, = E q, +—,
' g, ERn

the kinetic energy is a function of the generalized coordinaies ¢, and their first time
devivatives, the generalized velocities §,. In particular, since the particle velocity is 2
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linear function of the generalized velocities, the kinetic energy is a quadratic function of the
generalized velocities. Now we have

N .
aqa znl l. =2miri":7:l%y

i=] i=]

the second equality following from the preceding equation, which implies that

gr.  or;

1 1
- ——

04, 04,

In terms of the cartesian coordinates (x,y,z) the kinetic energy for a single particle is
Te %m(iz +y2 +2%), and the quantities 9T/d% = mx, 3T/8Y = my, 9T/02 = mz are the
cartesian components of the linear momentum of the particle. The quantity 0T/dq, can
thus be thought of as a generalized momentunt,Vthe " component” of momentum in the

"direction” of the generalized coordinate g, (compare the definition of generalized force).
In view of Newton's second law it makes sense to consider its (total) time derivative

dt(&qa) Em“ +E ifi dt( )

iml =1

The first term on the right is exactly what we need for swiinertiad) 1 the second term we
can exchange the order of the ime differentiation and the q-differentiation, since

( ) é a’r 4 i)zria(?(é_g_ ar; a(dr)
dtlag, )~ & aqbaqa B Gia, 9, | & 90, at) 3q, \ dt

The second term can thus be written in the form

A T 2 T
Emiri-—————=—_— zmirl = —
“~ dq, dq, & 9q,

The work done by the inertial forces in a virtual displacement finally becomes

in ar; [T dfaT))
s (inertial) _ 22( m;f 6Qa Ekaqa—a(aqa))ﬁqa-

awlisl] aml

Putting together our expressions for dW(PHed) ang  gwlnemia) e see that
d'Alembert's principle gives

IThis definition will be modified on page 47 when we consider more general systems.
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f

( aT d [ aT\)
ELQa*a'a(aqa))ﬁ%‘“

Since the generalized coordinates q, are all independent, the coefficient of each of the
virtual displacements 8q, must vanish, which leads to the set of f equations

L) T g a=l2ef.
dt\dq,/ 9dq,

This set of f second order differential equations for the f generalized coordinates q, is

known as Lagrange's equations. We have seen that if the applied forces are all
conservative, the generalized force can be written

v
dq,

Qa”_

where V is the total potential energy. Since V does not depend on the velocities,
Lagrange's equations become in this case

1(—6-.1‘— L0 ezl
dt\ aq, 0q, _
where

L=T-V,

the difference between the kinetic and potential energies, is called the Lagrangian.
Lagrange's equations provide one of the most convenient ways of writing down the
equations of motion for a wide range of mechanical systems. We can proceed as follows:
1. Choose a set of generalized coordinates (q;,qz,---.q¢)-
2. Express the kinetic energy T and potential energy V of the system in terms of these
coordinates, their first time derivatives, and the time. Form the Lagrangian L =T -V.
3. Substitute L into Lagrange's equations and perform the indicated differentiations.
There are many advantages to such an approach. First, the unknown forces of constraint
do not appear. Second, we can use any set of generalized coordinates to describe the
configuration of the system, and in particular we can choose a ¢t suited to the problem at
hand; Lagrange's equations take the same general form no matter what set of coordinates
we use. And finally, we need consider only scalar quantities, speed, kinetic and potential
energy, as opposed to the vector quantities, acceleration, force, associated with Newtonian
mechanics. Some examples will help make these features clear.
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Plane pendulum

Fig. 3.01. Plane pendulum
A mass m is suspended from the ceiling by a string of length ¢ and swings back

and forth in a vertical plane (Fig. 3.01). Gravity g acts vertically down. Let us use
Lagrange's method to find the equation of motion. A suitable generalized coordinate is the

at.sle 8 the string makes with the vertical. In terms of this variable the kinetic energy is
T = 1me?$?,
and the potential energy (relative to the ceiling) is
= -mgfcosB.
The Lagrangian is thus
L= -12~m€262 +mgfcosH.

Its derivative with respect to € is

JL
9—6 - —mgfsin®

and is physically the torque on the mass about the point of support. 1ts derivative with
respect to 0, the generalized momentum associated with 0, is

aL .
o = me®6
a0

and is physically the angular momentum of the mass about the point of support.
Lagrange's equation thus gives the equation of motion

m#%0 = ~mg¢sin8.

We do not have to use the angle 8 as generalized coordinate. We could, for
example, instead use the horizontal displacement
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X = £sin@

of the mass from equilibdum. In terms of this variable the speed of the mass is

X £

V= - ,
cosB  4fg2 _ 2

and the kinetic energy T and potential energy V are given by
2.2
T-%m-ﬁ% and V=-mgVe-x2.
£ -x

We form the Lagrangian L = T -V, substitute it into Lagrange's equation, perform the
differentiations and simplify, and thus obtain the equation of motion in terms of the
generalized coordinate x,

.2
v mxx mgx
mx = -— 7 = % £ _x?
£ -x ¢

This equation for x is much more complicated looking than the equation for the angle 6,

although they both describe the same physical system. It makes sense to try to find
generalized coordinates for which the equations of motion are "simple.” At the moment we
have no systematic way to do this, although experiencé helps. In Chapter VII we study in
detail transformations from one set of variables to another. Indeed, in Chapter VIII we use
this approach to solve the equations of motion, by finding a transformation to a set of
variables for which the equations can be solved by inspection.

Spherical pendulum

I
O\ ¢

|

e
e

mn

|
!
A=
R

Fig. 3.02. Spherical pendulum

A mass m is suspended from the ceiling by a string of length £ as in the plane
pendulum. Now, however, the mass is allowed to swing in all directions (Fig. 3.02). The
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situation is thus the same as a mass constrained to move on the surface of a sphere.
Gravity g acts vertically down. Let us again use Lagrange's method to find the equations

of motion. Suitable generalized coordinates are the spherical polar angles 6 and ¢. In
terms of these variables the kinetic energy is

T =1me?(6? + $%sin20).
The potential energy is the same as for the plane pendulum, so the Lagrangian is

L = $mé (6% + $%sin®8) + mglcosh.

Its derivatives with respect to the coordinates 0 and ¢ and with respect to the generalized
velocities 8 and ¢ are

oL = m#? sinGcosBdm2 - mgésind ‘(& =0

a9 o

9L e L m2sin?6¢,
a0 09

so Lagrange's equations of motion are

m¢%0 = me2sinBcosB $? - mglsind

i—(mt’z sin’ 8¢) =0.

In this example we notice that the Lagrangian does not contain the generalized coordinate ¢

(such coordinates are often called cyclic coordinates). Physically, the reason for this is
that the system remains unchanged under rotations about a vertical axis; the system is
invariant under these rotations. Lagrange's equations then imply that the generalized
momentum m#? sin? 8¢ associated with ¢, which is physically the angular momentum in
the vertical direction, is a constant of the motion; the angular momentum is conserved.
This illustrates a general connection between invariance properties and conservation laws
which we explore in detail in Chapter V.

Electromagnetic intéraction)

There are, of course, systems whose forces are not obtainable from'a potential
V(r,t). For some of these it may nevertheless be possible to write down a Lagrangian, a
function of the g's, q's, and t, which when substituted into Lagrange's equations gives the
correct equations of motion. One might wonder why we need a Lagrangian if we already

2John David J ackson, Classical Electrodynamics, (John Wiley and Sons, New York, NY, 1962; 1975), 2nd
ed., particularly sects. 6.4, 6.5, 12.1. -
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know the equations of motion. A reason is that by describing the system in terms of a
Lagringian, we can then bring to bear on the problem all the ideas and techniques of
advanced mechanics . Al$o, T many cases we do not know the equations of motion a
priori. We may then try to find suitable equations by writing down a suitable Lagrangian,
using general principles and known cases as a guide.

An important case is the interaction of a particle of charge ¢ with an electromagnetic

field. If the field is described by scalar and vector potentials ¢ and A, so that the electric
and magnetic fields E and B are given by

E-—V¢--l—§£— and B=VxA,

C

we can show that a suitable Lagrangian is
L = 1 milif? —e¢ + (c/c)i A,

Since Lagrangians are no longer necessarily the difference between the kinetic and
potential energies, it is convenient to change, from now on, cur definition of the

generalized momentum to p, = dL/dd, from our carlier expression dT/dq, (the two
expressions agree if L(q,4,t) = T(g,d,t) - V(q,1)). The generalized momentum associated
with r is then - -

p= QI; = mf + EA
Jr ¢
and is the sum of the ordinary "kinetic momentum" mi and a term (e/c)A which we shall

consider in more detail in the next section, We shall see that it is "field momentum.” The
time derivative of the generalized momentum is

G0 | i BOA L Ehiv)A.
dt\ or) cdt ¢

The derivative of the Lagrangian with respect to the generalized coordinate r is
VL = -eVé +(efc)V(i- A},
so Lagrange's equations give

i ool —vg - LAY L Crogoay -
mi = ¢f Vé — /+C[V(r A)-(&-VA]

The term in round brackets on the right is the electric field E. A vector identity shows that
the term in square brackets can be written

VA - VA= x(VxA)=1xB
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where B is the magnetic field. Lagrange's equations become

. c.
mr =eE+—-rxB.
c

We recognize the right-hand side as the electromagnetic force, the Lorentz force, which
an electromagnetic field (E,B) exerts on a particle of charge e. This shows that the stated
Lagrangian is indeed "suitable.”

: The electromagnetic potentials (¢,A) for a given system are not unique. We can
always subject them to a gauge transformation, the vld potentials (¢,A) being replaced
by new potentials (¢',A’) with

¢ = ¢~ (1/c)or/ot
A'=A+VA

where A is an arbitrary (single-valued) function of space and time, without affecting any of

the physics. In particular, under such a transformation the electromagnetic fields (E,B)
remain unchanged, Since the Lagrangian contains the potentials rather than the fields, we
might worry that it might lead to non-gauge-invariant physics. We can see, of course, that
the resulting equaticn of motion is gauge invariant, but it would be nice to see this from the
Lagrangian. Under the above gauge transformation, the Lagrangian L is replaced by a new
Lagrangian L', with

L'=L+Eg?~\-.
¢ dt

The two Lagrangians differ by the total time derivative of (e/c)A. Now it is easy to show
that such a term gives zero identically when substituted into Lagrange's equations, so the
two Lagrangians are in fact equivalent. We should keep in mind that this applies to any
two Lagrangians which differ by any total time derivative. It is used again in Chapter V.
We often wish to describe the motion of electrons and other subatomic particles in
electric and magnetic fields, and for such particles speeds v close to the speed ¢ of light are
common. This means that relativistic mechanicg3%hould be used, the left-hand side of the

. . . d mv . .
above equation of motion being replaced by — . The resulting equation can

1-(v/c)?
be obtained from a Lagrangian

= —mclel —(vic)? - ed+(e/c)v-A

with modified first or "free particle” term. This term is not the (relativistic) "kinetic
energy,” and the second and third interaction terms are not "potential energy,” but no

3see, for example, Wolfgang Rindler, Iniroduction 1o Special Relativity, (Oxford University Press, Oxford,
UK, 1982}, Chap. V.



Interaction of an electric charge and a magnet 49

matter: when this L is substituted into Lagrange's equations, the correct equations of
motion result, and this is all we require.

We shall see in the next chapter that the action S = {Ldt, the time integral of the

Lagrangian L, is a more fundamental physical quantity than the Lagrangian itself. The
"free particle term” in the relativistic Lagrangian gives a contribution to the element of

action
—mCZ\]I —(v/ c)2 dt = —mc* dt

where dr is the element of proper time (the time read by a clock carried by the particle), a
relativistic scalar. If the stated Lagrangian is to describe relativistically invariant physics,
the remaining interaction terms

(-ed + (efc)v- A)dt = —(e/c)cdt~ A-dr)

should also form a relativistic scalar. And indeed they do, being just the scalar product
—(g/c)A - dx of the relativistic four-vectors A = (¢,A) and dx = (cdt,dr). We can tum this
argument around and use it to suggest the form of the interaction, the interaction terms
clearly being a relativistically invariant extension of —-Vdt where V =e¢ is the potential
energy of a charge in an electrostatic field.

Interaction of an electric charge and a magnet?)

In order to further our understanding of the electromagnetic interaction, let us
consider the interaction of a point electric charge e and a small magnet with magnetic dipole
moment m. We restrict our attention to the quasi-static limit in which radiation is
neglected, and the charge and magnet and their quasi-static fields form a closed system.

This system would seem to be trivially simple, but as we shall see, it has some surprises in

4Most electromagnetism texts do not discuss the aspects of this topic with which we are concerned here,
but see:

W. Shockley and R. P. James, "Try Simplest Cases' Discovery of 'Hidden Momentum' Forces on
"Magnetic Currents'," Phys. Rev. Lett. 18, 876-879 (1967).

W. Shockley, "'Hidden Linear Momentum' Related to the o-E Terms for a Dirac-Electron Wave Packet in
an Electric Field,” Phys. Rev. Lett. 20, 343-346 (1968).

P. Penfield and H. Haus, The Electrodynamics of Moving Media (MIT, Cambridge, MA, 1967), p. 215;
*Force on a Current Loop,” Phys, Lett, 26A, 412-413 (1968).

Sidney Coleman and J. H. VanVleck, "Origin of "Hidden Momentum Forces' on Magnets,” Phys. Rev.
171, 1370-1375 (1968).

W. H. Furry, "Examples of Momentum Distributions in the Electromagnetic Field and in Matter,” Am. J.
Phys. 37, 621-636 (1949).

M. G. Calkin, "Linear Momentum of Quasistatic Electromagnetic Fields," Am. J. Phys. 34, 921.925
(1966); "Linear Momentum of the Source of & Static Electromagnetic Field," Am. J. Phys. 39, 513-516
(1971).

Y. Abaronov, P. Pearle, and L. Vaidman, "Comment on ‘Proposcd Aharonov-Casber effect: Another
example of an Aharonov-Bohm effect arising {rom a classical lag," Phys. Rev. A 37, 4052-4055 (1988).
Lev Vaidman, “Torque and force on a magnetic dipole,” Am. J. Phys. 58, 978-983 (1990).
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store. Choose a coordinate systemn in which the magnet is instantaneously at rest at rp,,

and the charge is at r, and has velocity v, = dr./dt (Fig. 3.03).

electric charge e

magnetic dipole m

origin
Fig. 3.03. Electric charge and magnet

The magnet generates a magnetic field
B, (r)=VxAy(r)
where

mx(r-r_)
AL () = ———=
Ir—rgl
is the vector potential in the gauge in which V-A = 0;itis the transverse v
This magnetic field exerts a Lorentz force
r

[+
mone T Eve X Bm(l‘e)

= EVC(VC .Am(re)) _ SM
c ¢ dt

ector potential.

on the moving charge. The second line, expressing the force in terms of the vector

potential, follows from reversing some of the steps in the previous section
hand, the moving electric charge generates a magnetic field

B.(r)= —lc-ve x E,(r)

where

_rc

IS

Ee(r)=clr

[

. On the other
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is the electric field due to the charge. This magnetic field exerts a Lorentz forcdg i

F =V, (m-B(ry))

€onm
on the magnet. Now we have

.mx(r,-r,) €

1 €
m-Be(rm)--;m-ve ><Ee(rm)-;:-ve Eve'Am(re).

3
Ire = Iyl

From this and from V, = -V_ (the arguments depending only on r, —r,), we see that
Feonm 15 the negative of the firsz term in F ., and thus

e dA  (r.)

c dt

Fmone + Feonm

The electromagnetic forces which the magnet exerts on the charge and which the charge
exerts on the magnet are not equal and opposite; Newton's third law does not hold, even in
this quasi-static limit. This is the first surprise. If we use Newton's second law to set

where p, and p_, are the momenta of the charge and of the magnet, we see that the total
mechanical momentum p, + p,, is not constant. However, we do have

Pioial ® Pe + P + (€/C)A, () = constant.

The third term (e/c)A ,, (r,.) is the momentum in the electromagnetic field which consists of

the electric field of the charge and the magnetic field of the magnet. The usual expression
for electromagnetic field momentum is the integral over all space of a field momentum

density (1/4nc)E x B. One can show, however, that in the quasi-static limit
p - Ede3r=-!- Ad’r
em ‘4:n:cf cf P

where p is the electric charge density and A is the transverse vector potential. OQur
expression {e/c)A, (r.) for the field momentum is thus equivalent to the usual expression.
To summarize: we must include electromagnetic field momentum if we want the
momentum of the (closed) charge-magnet system to remain constant.

Now comes the second surprise. The momentum of the charge is M,v,, but the
momentum of the magnet is not M v,,. One can show that the total momentum of any
static system is zero. Thus, even if the charge and the magnet are at rest, there must still be

SJohn David Jackson, Classical Electrodynamics, (John Wiley and Sons, New York, NY, 1975), 2ud ed., p-
185.
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mechanical momentum somewhere to cancel the non-zero field momentum. The only place
this can be, the only place where there is moving matter, is in the magnet, in the circulating
charges which generate the magnetic moment. The magnet at rest thus has net "hidden"

mechanical momentum -(¢/c)A,, (r.). If the magnet moves with low velocity Vi, it has
additional momentum M, v = for a net momentum

P = MpVn ~ (€/OA(T,).
The total momentum of the charge-magnet system, mechanical plus electromagnetic, is thus
Pt = Meve + My Vi = (e/)AR(redl+ (C/C)Am(re) =M.V, + MV

and is constant. The last expression looks just like the ordinary mechanical momentum of
two particles, with no suggestion of field momentum or of hidden mechanical momentum,

these latter contributions canceling. We have M (dv,/dt) = =M, (dv, /dt), so if we

define “"force” as "mass times acceleration” rather than as "rate of change of momentum,”
the "force" the magnet exerts on the charge is equal and opposite the "force" the charge
exerts on the magnet. In this form Newton's third law holds.

To see the origin of the hidden mechanical momentum in the magnet, let us consider
a simple model. Suppose that the magnetic moment is due to a particle of mass m and
charge q circulating around a closed loop (Fig. 3.04).

magnetic moment m

-‘—— . .
% —— clectric field E
B I——

mass m
charge q

Fig. 3.04. Magnetic moment in an electric field

The average (relativistic) momentum of such a system is
o

mdl

! mv 1
3y = — dt =—
e rhl_(v@z f§)\—/1~<v/c>2

where T is the time to go around. If the speed of the particle is constant, we have
{p) x f dl = 0 asexpected. Now suppose that the loop is in an electric field. The speed of
the particle is then not constant, but varies so as to keep the (relativistic) energy

mcz

-

£

+4¢,

where ¢ is the electrostatic potential, constant. The average momentum becomes
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1 I
(P) = (e~ ap)dl = -~ fodl

where I =q/t is the average electric current around the loop. A vector identity enables us
to rewrite this expression for the momentum as

I I
=-—f[daxVp=—[daxE,

the integration now extending over a surface which has the loop as its edge. In the
situations in which we are interested the electric field is essentially constant over the area of
the loop, and we can factor it out, obtaining finally

1
- mxE
{(p} me

where m = (I/c) f da is the magnetic dipole moment. It is easy to see that this expression

for (p) is, for our system, the same as ~(e/c)A ,(r.).
Because of these considerations, the equation of motion of a small magnet of mass
M and magnetic moment m in an electromagnetic field (E,B) is (now dropping subscripts)

d 1 -'\-
= z - V(m"
dt(Mv+meE/ {m-B)

in the instantaneous rest frame of the magnet. Carrying out the differentiations, we find

Mﬂ+lgﬂxE+lmx%§.=(m-V)B+mx(VxB).
c

The last terms on both sides can be simplified if we make use of the Maxwell equation

VxB=ﬁJ+l§E
c ¢ ot

where J is the electric current density of the source of the field at the location of the
magnet. We thus find

MY m-vB- 19 s
dt ¢ dt c

The first two terms on the right are what we would get from a picture of a magnetic dipole
which consisted of positive and negative magnetic poles separated by a small distance (as
for an electric dipole). The presence or absence of the last term (4x/c)mx J in the
equation of motion thus enables us to determine whether the magnetic dipole moment is
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due to circulating electric charges or to magnetic poles. For example, experiments shows}
that this term is of importance for a neutron moving through magnetic material; the neutron
thus behaves as if its magnetic moment were due to circulating electric charges rather than
10 magnetic poles.

Exercises

Do exercises 3 to 10 from Chapter II using Lagrangian methods.

1.
y
g
m
X

A bead of mass m slides without friction along a wire which has the shape of a

parabola y = Ax? with axis vertical in the earth's gravitational field g.

(a) Find the Lagrangian, taking as generalized coordinate the horizontal

displacement x.

(b) Write down Lagrange's equation of motion.
2.

h = h(t)
4
Nt

!

m
!

The point of support of a simple plane pendulum moves vertically according to
y = h(t), where h(t) is some given function of time.

(2) Find the Lagrangian, taking as generalized coordinate the angle 6 the pendulum
makes with the vertcal,

(b) Write down Lagrange's equation of motion, showing in particular that the
pendulum behaves like a simple pendulum in a gravitational field g+ h.

6C. G. Shull, E. O. Wollan, and W. A. Swrauser, "Magnetic Structure of Magnetite and Its Use in Studying
the Neutron Magnetic Interaciion,” Phys. Rev. 81, 483-434 (1951); D. J. Hughes and M. J. Burgy,
*Refiection of Neutrons from Magnetized Mirrors,” Phys. Rev. 81, 498-506 (1951).
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m

A mass m is attached to one end of a light rod of length £. The other end of the rod
is pivoted so that the rod can swing in a plane. The pivot rotates in the same plane

at angular velocity w in a circle of radius R. Show that this "pendulum” behaves

like a simple pendulum in a gravitational field g = ®?R for all values of £ and all
amplitudes of oscillation.

A pendulum is formed by suspending a-mass m from the ceiling, using a spring of
unstretched length £, and spring constant k.

(a) Choose, and show on a diagram, appropriate generalized coordinates, assuming
that the pendulum moves in a fixed vertical plane.

(b) Set up the Lagrangian using your generalized coordinates.

(c) Write down the explicit Lagrange's equations of motion for your generalized
coordinates.

A double plane pendulum consists of two sizuple pendulums, with one pendulum
suspended from the bob of the other. The "upper” pendulum has mass m; and
length £;, the "lower" pendulum has mass m, and length £,, and both pendulums
move in the same vertical plane.

(2) Find the Lagrangian, using as generalized coordinates the angles 6 and 6, the
pendulums make with the vertical.

(b) Write down Lagrange's equations of motion.
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gl m

A bead of mass m slides on a long straight wire which makes an angle a with, and

rotates with constant angular velocity w about, the upward vertical. Gravity g acts
vertically downwards.

(a) Choose an appropriate generalized coordinate and find the Lagrangian.

(b) Write down the explicit Lagrange's equation of motion.

g m
(o}

A particle of mass m slides on the inner surface of a cone of half angle o . The axis
of the cone is vertical with vertex downward, Gravity g acts vertically downwards.
(a) Choose and show on a diagram suitable generalized coordinates, and find the
Lagrangian.

(b) Write down the explicit equations of motion for your generalized coordinates.

Using spherical polar coordinates (r,0,¢) defined by

x =rsinfcos¢p y=rsinBsing z=rcosb,
write down the Lagrangian and find the explicit Lagrange’s equations of motion for
a particle of mass m moving in a central potential v(r).

For some problems paraboloidal coordinates {€,m,¢) defined by
~fneosy  y=Ensing  z=F(E*-n)
turn out to be convenient. ‘
(a) Show that the surfaces & = const. or 7 = const. are paraboloids of revolution
about the z-axis with focus at the origin and semi-latus-rectum E;,z or nz.

(b) Express the kinetic energy of a particle of mass m in terms of paraboloidal
coordinates and their first time derivatives.

(Ans. T = %m(%z + nz)(éz + ﬁz) + %mgznzd)z)
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The motiqn of a particle of mass m is given by Lagrange's equations with
Lagrangian

L = exp{at/m)(T - V)
where a is a constant, T=4m(x*+y?+2%) is the kinetic energy, and
V = V(x,y,z) is the potential energy. Write down the equations of motion and
interpret.

A system with two degrees of freedom (x,y) is described by a Lagrangian
L = Lm(ai?® + 2bky + cy*) - $k(ax® + 2bxy + cy?)
where 2, b, and ¢ are constants, with b? = ac. Write down Lagrange's equations

of motion and thereby identify the system. Consider in particular the cases
a=c=0,b=0and a=-c,b=0. '

The Lagrangian for two particles of masses m, and m, and coordinates r) and ry,
interacting via a potential V(r; - r;), is
1 L1200 LR
L=2m|if + $m,esf - Vir, - rp).
(a) Rewrite the Lagrangian in terms of the center of mass coordinates
myry + mor . .
R=—-1""22 and relative coordinates r =r, -T,.
nmy +my .
(b) Use Lagrange's equations to show that the center of mass and relative motions
separate, the center of mass moving with constant velocity, and the relative motion

being like that of a particle of reduced mass T2 na potential V(r).
ml + m2 -
Consider the motion of a free particle, with Lagrangian
L=im@?+y*+3%),
as viewed from a rotating coordinate system
X' = xcosB +ysinf, y' =-xsin+ycosh, z'=z
where the angle 6 = 8(t) is some given function of time.
(a) Show that in terms of these coordinates the Lagrangian takes the form
L= %m[(xlz + y12 + ilZ) + 2(1)()(')'/' _ yl;'(l)+ wZ(xiz + yrZ)]
where o = d8/dt is the angular velocity.

(b) Write down Lagrange's equations of motion, and show that they look like those
for a particle which is acted on by a "force." The part of the "force” proportional to

w is called the Coriolis force, that proportional to w? is called the centrifugal

force, and that proportional to dw/dt is called the Euler force. Identify the
components of these "forces.”
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14.

15.
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(a) Write down the equations of motion resulting from a Lagrangian

L =4im(x? + §% + £7) - V(1) + (eB/2e)(xy - yX),
and show that they are those for a particle of mass m and charge e moving in a
central potential V(r) together with a uniform magnetic field B which points in the
z-direction.
(b) Suppose, instead of the inertial cartesian coordinate system (x,y,z), we use a
rotating system (x’,y’,z") with

X' = xcoswt + ysinwt, y' = —xsinwt+ycoswt, z'=z.

Change variables, obtaining the above Lagrangian in terms of (x',y’,z’) and their
first time derivatives. Show that we can eliminate the term linear in B by an
appropriate choice of w (this is Larmor's theorem: the effect of a weak magnetic
field on a system is to induce a uniform rotation at frequency g, the Larmor
frequency).

Show that the equations of mation of an electric charge e interacting with a magnet
of moment m can be obtained from a Lagrangian
L=1iM.vi+ M VE +(efe)(Ve — Vi) AlTe = T,
where
mx(r, -r,)
A(r. -r - —— M
( ¢ m) 're - rm}3
is the vector potential at the charge due to the magnet.
(Y. Aharonov and A. Casher, "Topological Quantum Effects for Neutral Particles,”
Phys. Rev. Lett. 53, 319-321 (1984)).



CHAPTER 1V

THE PRINCIPLE OF STATIONARY ACTION
OR HAMILTON'S PRINCIPLE

The dynamical behavior of a mechanical system has to this point been described by
differential equations, by Newton's laws or, more generally, by Lagrange's equations. In
this chapter we consider a different way of describing the dynamics. We show that a
mechanical system moves from one configuration to another in such a way as to make a
certain integral over the motion, called the action integral, stationary. Apart from the
intrinsic philosophical interest of this principle, the ideas and techniques we develop have
applications in other areas of physics, some of which we also discuss.

Principle of stationary action

The configuration of a system with f degrees of freedom is specified by the values
of a set of f generalized coordinates q,. These coordinates form an f dimensional cartesian
space called configuration space. Each configuration of the system cormresponds to a
point in this space. As the configuration of the system and hence the coordinates q,
change with time, this point moves. A convenient way to represent this motion is by a path
in an f+1 dimensional space, sometimes called extended configuration space,
consisting of the f generalized coordinates and the time (Fig. 4.01). This chapter is
concerned with the properties of such paths.

Time (1) | actual
motion
6q [ virtual
motion
7 4
Space (q)

Fig. 4.01. Paths in extended configuration space

In Chapter II we introduced the idea of a virtual displacement in which we imagined
subjecting, at fixed time t, each of the coordinates to a small change 8q,. At that stage in
our discussion of mechanics, virteal displacements at time t and at a neighboring time
t + dt bore no particular relationship to one another. They were completely independent.
We now restrict our attention to virtual displacements dq, which are continuous functions
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5 ﬂ‘ .
of time with continuous first and second time derivativesil- Surrounding any actual path
.orresponding to a possible motion of the system, we then have a family of neighboring
virtual paths (which may or may not also be actual paths). We are interested on how

certain physical quantities, functions of the generalized coordinates q, and generalized
velocities q,, change as we go from a point on the actual path to a corresponding point on

a neighboring virtual path. The change in the generalized coordinate q, is of course 8q,,
but what is the change in the veneralized velocity? To find this, consider

d d dq
—8q, =— +08q,)~-—2%,
dt ta dt(qa %) dt

where we have added and subtracted dq,/dt. Now the right-hand side is clearly the
difference between the generalized velocity on the virtusl path and the generalized velocity
on the actual path. It is the change in velocity in going from the actual path to the
corresponding point on the virtual path, thus

d . dq .
—bg, = d—2 = 8q,.
e Ehal s 04,

This shows that the operations of actual displacement d and virtual displacement & can be

performed in either order; they "commute,” dd = dd.

Let us now consider how the Lagrangian changes under a virtual displacement, as
we go from the actual path to the corresponding point on a neighboring virtual path. We
assume that L is a continuous function of the g's, §'s, and t, with continuous first and
second partial derivatives with respect to its arguments. We have

fr. . £ {
oL oL . oL d{dL d aL
oL = 2 6Qa T bga = E —""(”__) 6Qa +‘-2—_.“6Qa'
/ “ aq, 349, & dg, dtioq, dthl&qa

For an actual path the generalized coordinates q (t) satisfy Lagrange's equations. Hence

the first term on the right-hand side is zero, and we are left with the second term, a total
time derivative. If we now integrate both sides with respect to time from some initial time

tg to some final time ;, we get

1
: £ f
b d w L aL
dLdt= | — ¥y ——=0q,dt= Y —dq
t [dzgaqa 2 aE_laqa 8
[4]

L
Ly

The left-hand side can be written 8S, where

1L ess restrictive assumptions are somelimes possible; see, for example: R. Courant and D. Hilbert,
Methods of Mathematical Physics (Inlerscience Publishers, Inc., New York, 1953), Vol. [, Chap. IV, in
particuiar p. 200; I. M. Gelfand and S. V. Fomin, Calculus of Variations, (Prentice-Hall, Englewood
Cliffs, NJ, 1963), trans. and ed. Richard A. Silverman, Sects. 4.1 and 15,
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Slal = f}'L@@.d.vat,

the time integral of the Lagrangian along a path q(t), is called the action for the path.
Action is a type of quantity known as a functional, a quantity whose value is determined
by specifying a function over a particular range. We shall see that the action functional

S[q] plays a major role in our subsequent studies in mechanics. The right-hand side of the
preceding equation can be expressed in terms of the generalized momentum p, = dL/dd,,
so we finally obtain

f
8= ¥ pada,l; .

awl]

Now if the actual and virtual paths coincide at the initial and final times, so the virtual
displacement dq, is zero at ty and t, we have

85=0.

The action is thus the same along the actual path and along any neighboring virtual path
with the same end points. We say that the action along the actual path is stationary.

Compare the situation in ordinary calculus: a function f(x) is stationary (has a minimum,
maximum, or point of inflection) at a particular point x if its change df = (df/dx)dx in

moving to a neighboring point x + dx is zero.
We may now state:

The principle of stationary action (Hamilton's principle)

The actual path g(t) of a mechanical system
between end points (qg,tg) and (q,t)
is such that the action

Slal - J[' L(a,q.0dt

is stationary
when compared with
neighboring virtual paths with the same end points.

We have derived the principle of stationary action from the equations of motion,
from Lagrange's equations. But now we can turn the whole procedure around. We raise
the principle of stationary action to the level of a fundamental postulate about the nature of
mechanical motion. From it, by reversing the previous steps, we find

4 ¢
Bsnf‘ﬁLdtn D oL ——‘1—(-@?)
to 0q, dt\0q,

to am]

dq,dt=0.
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Since at each instant the 8q, represent arbitrary independent variations, the coefficients of

each of them, the quantities in square brackets, must at each instant vanishi2,*The resulting
equations are Lagrange's cquations, which as we have seen are the equations of motion for
a mechanical system in a wide range of circumstances.

The two statements about motion, "Lagrange's ~quations” and "principle of
stationary action,” are equivalent. However, the views they offer are quite different.
"Lagrange's.cquations” are differential.gguations; they tell the system how to.mave one
inflfEsimal siep at a time. “The principle of stationary actign.” on the other hand, is an
~im§%;a§w,iple; ﬁgggixg&iﬁ\g syster to consider overall motians from start to finish, and
to Qoose the one.which iakes the action integral stationary. S

Calculus of variations

The principle of stationary action is an example of a problem in the branch of
mathematics known as the calculus of variations33One is given a definite integral

I=f-'-fF(yi;ayi/axp;azyi/axpaxv;---;xu)dxl---de

wi.s¢ integrand is a known function F of a set of dependent variables y;, their derivatives
to some order with respect to a set of independent variables x,,, and the independent

variables x,,. The problem is to find the set of functions y;(x;--xy) which makes the

integral stationary. If there is only one independent variable x, and if F does not contain
derivatives of the dependent variables higher than first order, the required functions satisfy
Lagrange's equations, usually known in this context as the Euler-Lagrange equations

d(_ 9F ) _9F
dxka(dy-‘/dx)) ay;

One of the earliest problems of this type to be considered was the so-called
brachistochrone problem: find the curve joining two puints in a uniform gravitational
field such that the zime required for a particle, starting from rest, to slide along the curve
from the upper point to the lower is a minimum. The curve of minimum distance is, of
course, the straight line connecting the points, but this is not necessarily the curve of
minimum time. For example, if the start of the curve is steeper than the straight line, the
particle will accelerate to a given speed more quickly, and this may more than compensate
for the greater distance traveled. To set the problem up, choose the x-axis horizontal and
the y-axis vertically down parallel to the gravitational field g. Suppose that the particle
starts at the origin. Its speed when it has fallen a distance y is

v =28y,

2This is not as obvious s it might at first appear, since the dq arc not really arbitrary but are restricted by
certain continuity and smoothness conditions. For a proof see the references in footnote 1.
3aspects of the theory beyond those required here can be found in the references of footnote 1.
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and the time it takes to travel along the curve from (0,0) to (x;,y,) is given by

51 ds

t= | —

O Vv

9

where

ds = y/(dx)? + (dy)? = y/1+ (dy/dx)? dx

is the element of distance along the curve. The time can thus be written

X, 2
. flt_(éx/_d& dx.
o 2gy

This has the same form as the expression for "action,” with y playing the role of
"generalized coordinate," x the role of "time," and

1+ (dy/dx)>

F(y,dy/dx) = 2ey

the role of "Lagrangian." The curve y(x) for minimum time satisfies the Euler-Lagrange
equation. This equation can be integrated most readily by making use of a result proved in
the next chapter (you may wish to prove the result before looking it up): if F does not
depend explicitly on x, and if y satisfies the Euler-Lagrange equation, the quantity

y-dy_oF ¢ /,, - inourcase\
dx a(dy/dx) L V2gy(1 + (dy/dx)) J

is constant. We set
y(1+ (dy/dx)*) = 2u

where a is a constant. This can be rearranged to give

y
JJ y dy = x.
o¥2a-y

The integration is performed by setting

y=a(l-cos¢).
We find
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X = afg(l — cos§)dd = a(¢p - sin).

These last two equations give the required curve for minimum time, the "brachistochrone,”

in parametric form with x and y expressed in terms of a parameter $. The constant a must
be chosen so that the curve passes through the end point (x;,y,). See Fig. 4.02.

(xp.yp
Y

Fig. 4.02. The brachistochrone

The curve is a cycloid, which is the curve traced by a point on the rim of a rolling wheel.
In our case the wheel has radius a and rolls along the x-axis. The starting point is a cusp of
the cycloid. The parameter ¢ is the angle turned through. The center of the wheel is at
(a¢,a), and the displacement of the point relative to the center is (-asin,-acos¢).

Geodesics

In Euclidean geometry a straight line is defined as the line of shortest distance
between two points. A geodesic is the generalization fey non-Euclidean curved spaces of
a "straight line." In this section we derive the general equations for a geodesic in a curved
space of an arbitrary number of dimensions. The results are useful not only in curved
spaces, but also in Euclidean tlat space when we choose to use curvilinear coordinates
rather than cartesian coordinates. To find the equations, we must first learn how to write
down an expression for the distance along a line. The distance ds between two
neighboring points in Euclidean three-space, in terms of the cartesian coordinates (X,y,z),
is given by

(ds)? = (dx)? + (dy)? + (d2)°.

As we have seen, it is frequently convenient to introduce, instead of cartesian coordinates,
other coordinates

x% = x%(x,y,2)
which may be more suited to the physical problem at hand. The expression for the distance
between two neighboring points in terms of these new coordinates can be obtained by

changing variables. Since the expression for (ds)? is homogeneous quadratic in the
cartesian coordinate differentials, it is homogeneous quadratic in the new coordinate

differentials dx® and is thus of the form
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(ds)? = ggp dx“dxP.

The set of quantities gas(‘x) = gpo (x), which in general are functions of the coordinates,

form the components of the metric tensor. Here we have adopted, as is usual in this
work, the Einstein summation convention whereby it is understood that repeated

indices such as o and B are to be summed over all values, whereas non-repeated or "free”

indices can take on all values. In spherical polar coordinates (r,8,¢), for example, the
distance between two neighboring points is given by z 8 .

(ds)? = (dr)? + r*(d8)” + r¥sin® B(d¢)>,

so the components of the metric tensor are g, = 1, ggg = r?, Boe = r?sin2@, with all other

coraponents zero, While we have inferred the general form for the element of distance
from that valid in Euclidean three-space, the expression holds for many other spaces, such
as two-dimensional curved surfaces, (some) three-dimensional non-Euclidean spaces, and
the four-dimensional space-time of relativity. Such spaces are called Riemannian.

A line is described by giving the coordinates x* as functions
x* =x*(\)

of some parameter A. The distance between two neighboring points on the line is then

dx® dx®
- \}gaﬁ o

and the distance along the line between two points with parameters Ag and A, is given by

A
' dx* dxP
> f VEor e

0

This is the expression for which we were locking. We now define a geodesic as a line
joining two points, with the property.that the distance along it is sTHORAFY When compared

iy A Gy i

with neighiboring Tings Which join. the-same-points. “The mathématical problem is the same

asin the principle of stationary action. Taking over those results, we see that a geodesic is

o gy B
determined by the Euler-Lagrange equations with 1) guﬁ%% playing the role of

"Lagrangian” and A playing the role of “time," thus
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E S O S SR W P,
dx dx® axpP M dax 24J dx® dxP ox* dh dh
BB ST

Recall that the repeated indices «,f,p,0 are summed over, and the free index u can take on

all possible values. Let us now choose the parameter A 10 be the arc-length s along the line.
We then have the constraint

dx® dxP
gup———— =1,

ds ds

and the equations simplify to

df, dx") 198ps dxP dx”
ds | " ds 2 ox* ds ds

Carrying out the differentiation on the left and rearranging, we find

ds ds 2

g dlxp - _}_ 2 agyp _ 0gp<) d_xp_dxc ! agpp + agua B agpu 'd_X_F.’_dXo
" ds? 21 ax?  oax* ax®  axP gx* ) ds ds
. : dxP dx? . .
The second equality follows from noting that & ds is symmetric in p and o, and hence
s ds

the term which multiplies it can be taken symmetric as well. The resulting equations for a
geodesic are usually written
2.p p o
d x dx" dx
e 0 =R
AP gs? KPO 4s ds

where

wee ol ax® o axP ax

1%W+%m_%w)

are the components of the Christoffel symbol. These equations for a geodesic by

. dx* dxf . : .
themselves imply that g“5~d——T 1s constant, and the constraint requires that this
s ds
constant be taken 10 be 1.



Geodesics 67

Examples:

1. In Euclidean three-space and with cartesian coordinates, the components of the
Christoffel symbol are zero, and the coordinates satisfy

d%x*
5= 0.
ds
They are thus linear functions of s,
= ro + NS

with Inl= 1. These, of course, are the equations of a straight line; the components of m are
the direction cosines of the line.

2. On the (two-dimensional) surface of a sphere of radius R and with spherical polar
coordinates 6 and ¢ (the co-latitude and longitude), the non-vanishing components of the
Christoffel symbo} are

Coop =~Topp =—Togo= -R%sinBcosH,

and the equations for a geodesic become

2 2 2,
i—g=sin6c056(9‘2\ -d—%¢=—200t69—q£i$
ds \ds/ ds*® ds ds

2 2
with R2{(9V 4 gnza(90V 1y
\ ds/ \ ds/

To find the solutions to these equations, we first note that if d¢/ds starts off zero, it
remains zero and the equations reduce (o

d o _, L
ds S R

with solutions
¢ =g 0 =04 = (s/R).

These are lines of longitude and are suitable geodesics when the end points lie along a
north-south line. If this is not the case, it is more convenient 1o describe the geodesics by

giving 8 as a function of ¢. To do this, we set

do_dodp 4 _d%(de)
ds d¢ ds ds? d(pz\ds/ d¢ ds?
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in the equations for a geodesic and hence find

2

2%
d ? -2c¢ot@ de): sinBcosH.
de- do

2
——200t6 = -cotf,
do

Thi$ can be written

which has the form of a "simple harmonic oscillator equation” in cot8, with solution
cot® x cos(¢p - ¢g). It is convenient to choose the constant of proportionality to be

~tanBy. The solution, the equation for a geodesic on a sphere, then becomes
sinBsinBycos(d — §p) + cosBeosBy = 0.

If multiplied by the radial distance r, this is the equation of a plane through the center of the
sphere; note that the -equation can be written n'r=0, where
r = (rsinfcos¢,rsinBsind,rcosB) gives the cartesian coordinates of a point on the plane,
and n = (sinBycosdy,sinBysin¢g,co88g) gives the cartesian components of the unit
normal to the plane. The geodesics are the intersections of this family of planes with the
surface r = R of the sphere. They are the great circle routes. Two such routes connect
any two (non-antipodal) points on the sphere. The shorter is the shortest route between the
two points, but the longer is neither a route of (local) minimum distance or of maximum
distance: there are nearby routes which, when second order terms are included, are shorter
than the long great circle, and also routes which are longer than the long great circle.

This is a good point to comment on the circumstances under which paths of
stationary action are paths of /eass action. Consider a path C of stationary action from point
0 to point 1. This path leaves 0 with some particula%féTo“ci”t‘W”PﬁtﬁS"Wﬁi?:ﬁ”Téavc'()” With
slighty different inatial velocity initially spread out. However, some or all may eventually
come together again, intersecting the path C at what are known as points conjugate to 0. It
can be shown that C is a path of least action provided 1 is closer to 0 than the first
conjugate point of QI o e TR T ooy T

3. In the special and general theories of relativity, events in space-time are labeled by four

coordinates x* , with x® = ct the time and (xl,xz,x3 ) the three space coordinates. The
invariant interval between two neighboring events is given by

(ds)? = g dxdx?,

where the metric tensor, which determines the geometry of space-time, is itself determined
by the energy-momentum distribution of matter (including fields) in the space.

41. M. Gelfand and S. V. Fomin, Culculus of Variations, (Prentice-Hall, Englewood Cliffs, NJ, 1963),
trans, and ed. Richard A. Silverman, Ciup. 5.
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In the flat space-time of special relativity and with cartesian coordinates, the interval
becomes

(ds)? = c2(dr)? - (dx)? - (dy)? - (dz)’.
The geodesics, which are the paths of a free particle, are straight lines

t=tg+YT

I =rg+YvT.

Here T = s/c is the proper time as measured by a clock carried by the particle, v = dr/dt is

the velocity of the particle, and v = /1 -(v/c)? is the Lorentz contraction factor.
Imagine the particle to be a rocket ship going from the earth to the moon, and take the x-
axis in the earth-moon djrection. The earth-moon displacement vt as determined by rocket

observers is a factor y ! less than the earth-moon displacement X ~ Xg as determined by
earth-moon observers. Rocket observers can picture the earth-moon displacement as a
measuring rod which moves with velocity -v with respect of them, and they find the
length of this moving rod to be less than that found in the rod's rest, earth-moon, frame;
the moving rod is short. This is known as Lorentz contraction. Also, the time interval
< between the two events, rocket leaves earth and rocket arrives at moon, as determined by

rocket observers is a factor y'l less than the time interval t -ty as determined by earth-
moon observers. Alternatively, earth-moon observers find the time interval between the
two events to be a factor y greater than the time interval found by the moving, rocket,
clock which is coincident with the two events; the moving clock runs slow. This is known
as time dilation.

In general relativity, motions, which the Newtoniap view would attribute to the
effects of "gravity," are atiributed to "space-time curvature.”>/In particular, particles which
Newton would say are "acted on only by gravity” follow geodesic lines through curved
space-time. In order to see how these views connect, let us consider a limiting case in
which the gravitational field is weak, so the components of the metric tensor deviate little
from their special relativity values, and let us further assume that the velocity of the

particles is small compared to that of light. We then have (dxo/ds) = c(dt/ds) ~1 and
(dr/ds) = (v/c) << 1 and can thus ignore on the right-hand side of the equation for a

geodesic all terms in the sum over p and o except the one for which p=o=0. The
equation for the x-component becomes

——or =Ty g9 = +=——-, which generalizes to 9—2—r ~ —V(-l-czgoo).
1,00 a ’ dtZ 2

5A. Einstein in H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The Principle of Relativity
(Dover Publications, New York, NY, 1923), trans. W. Perrctt and G. B. Jeffery, p. 111; Wolfgang Rindler,
Essential Relativity, (Springer-Verlag, New York, NY, 1969; 1977;1979), rev. 2nd. ed.; Ronald Adler,
Maurice Bazin, and Menachem Schiffer, Introduction to General Relativity, (McGraw-Hill Book Company,
New York, NY, 1965, 1975), 2nd ed.; Steven Weinberg, Gravitation and Casmology: Principles and
Applications of the General Theory of Relativity, (John Wiley and Sons, New York, NY, 1972).
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This is Newton's equation of motion for a particle moving in a gravitational potential
(gravitational potential energy per unit mass)

¢ = constant + c2gg.

We choose the constant so that gy, reduces to its flat space-time value +1 far from matter,

where we take, as usual, ¢ =0. The preceding equation then gives the time-time
compenent of the metric tensor

2¢(r)
)

goo(r) =1+ —=—=
C

as modified by a weak gravitational field. Qutside a spherical distribution of mass M the
gravitational potential is ¢ = - GM/r, so, for example, the correction at the surface of the
earthis -1.4x 107°,

One of the consequences of this modification to the metric tensor is that clocks in a
gravitational field run slow. To see this, first note that (for a static gravitational field and

suitable coordinates) if a light pulse leaves point A at coordinate time t, and arrives at
point B at time tg, then a light pulse which leaves point A at time t!y will arrive at point B
attime tp such that tg —t!y =ty —t,. The "travel time delay" remains constant. This can
be rearranged to give ty -ty = t)y ~t,, which says that the time interval between the

pulses as indicated on the coordinate clocks at A and B is the same. The rates of the
coordinate clocks have been adjusted so that this is so. On the other hand, the time interval

At (= As/c) indicated by a stationary standard clock at x, such as a particular atom
emitting a particular spectral line, is related to the coordinate time interval At by
At = \Jgon(x) At. The interval between the two pulses as indicated by a standard clock at
A (proportional to the number of periods of the given spectral line) is thus
At, = N g2o00(A) At , and that indicated by a standard clock of identical construction at B is

Aty = +/go(B) Atg. Since Aty = At,, we have

Aty ’goo(B) PR Bl
Aty Zoo(A) c?
the second equality following from our expression for ggg. If B is at a higher gravitational

potential than A, then Atg > At,. [t takes more periods tur the standard clock at B to fill
the interval between the pulses than for the standard clock at A; the standard clock at A thus
runs slow compared to that at B. Another way to say this is in terms of frequency. Let
At, be the period and v, = I/At, the frequency of a particular spectral line of an atom
at A, as determined at A. If this light travels to B, its period as determined there is Aty as
given above, and its frequency there is v, = I/Atg. The frequency of the same spectral
line of an identical atom at B, as deiermined at B, is of course vyp = vas. We thus have
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VAB _ ,goo(A) 1229

vgp | Zoo(B) ¢?
If B is at a higher gravitational potential than A, then v,p < vpp and light from A is red-
shifted compared to that from B8

Path integral formulation of quantum mechanics@

Consider the following experiment: a beam of electrons is emitted by a source,
passes through a double slit, and is observed on a screen (Fig. 4.03).

|

Source l 9

Double slit Screen
Fig. 4.03. The double slit experiment

The results are:

1. The electrons arrive at any given spot on the screen in bits of fixed mass and
charge at some spot-dependent average rate; if we decrease the intensity of the beam, the
rate decreases, but the size of the bits stays the same. We may say: "electrons behave like
particles."

2. We can measure the probability for an electron to arrive at various spots on the
screen. The result is curve Py,. This looks just like the double slit interference pattern for
classical waves, and based on this we may say: "electrons behave like waves.”

Our aim is to try to understand these two apparently contradictory results. To do
s0, we must be extraordinarily careful in what we say and in the mental pictures we create.
For example, if "electrons behave like particles,” we.might be tempted to say: "electrons
which arrive at the screen must have passed either through slit 1 or through slit 2." To
check this, we can block off slit 2 and measure the probability of arrival for electrons which

have passed through slit 1. The result is curve P, (Fig. 4.04). Repeat for slit 1 blocked
off, and the result is curve P,.

6R. V. Pound and G. A. Rebka, "Apparent Weight of Photons," Phys. Rev. Lett. 4, 337-341 (1960); R.
V. Pound and J. L. Snider, "Effect of Gravity on Nuclear Resonance,” Phys. Rev. Lett. 13, 539-540
(1964).

TFor paralle]l reading see: R. P. Feynman, “Space-Time Approach to Non-Relativistic Quantum
Mechanics,” Rev. Mod, Phys. 20, 367-387 (1948); Ricbard P. Feynman, Robert B. Leighton, Matthew
Sands, The Feynman Lectures on Physics, vol. 3, (Addison-Wesley Publishing Company, Reading, MA,
1965); R. P. Feynman and A, R, Hibbs, Quantum Mechanics and Path Integrals, (McGraw-Hill Book
Company, New York, NY, 1965).
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Fig. 4.04. Probability with one slit blocked

Itis clear that Py, = P, + P,. Note in particular that for P, there are points where
no electrons arrive when both slits are open, so it appears that closing one slit has increased
the number from the other. On the other hand, note that there are points (say the center)
where Py, > P, + P, 80 it appears that closing one slit has decreased the number from the
other. These considerations indicate that it is improper to say: “electrons which arrive at
the screen must have passed either through slit 1 or through slit 2.”

But suppose we keep track of which slit the electrons go through, and where they
end up on the screen. For example, we could put a source of light between the slits and
observe the scattered light. It turns out that we obscrve scattered light either near slit 1 or
near slit 2. It would appear that the electrons indeed go through one slit or the other; they
behave like particles. Further, electrons which go through 1 give curve P, electrons
which go through 2 give curve P,, and electrons which go through 1 or 2 necessarily give

curve P, + P,. There is now no interference! The process of observing which slit the
electron goes through destroys the interference pattern. Suppose we try to minimize the
effect of the observing by turning down the intensity of the Iightsé}’l"hen, however, we
sometimes miss an electron; it gets to the screen without being observed, so we can't tell

which slit it came through. And these electroiis give curve Py, !

We cannot form a classical picture of this, but we can describe mathematically what
happens as follows: PR 5 R

1. There is a certain probability-amplitude ¢, (a complex number) for arriving
if slit 1 is open, such that Py =I¢;*. Ditto for 2.

2. The probability amplitude for arriving with slits 1 and 2 open, and no detection
apparatus present, is ¢, = ¢; + ¢,, and

Pyy = b + ¢2|2
= |01 +[gaf” +2Re(9}2)
=P, + P, + 2./P,P, cosd

where 8 is the phase difference between the two amplitudes. Because of the last term, there
is probability interference. If there is some apparatus present which is capable of

8We may also decrease the frequency of the light, What happens then?
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determining which slit the electron goes through, its effect is to randomize the phase

difference d. The last term then gives zero, and we recover the classical result.
The double slit experiment suggests the following generalization: the probability
for an electron to go from one space-time point A to another space-time point B is the

square of the modulus of a probability amplitude ¢. This amplitude can be written as a sum
over all the various paths leading from A to B of the probability amplitude ¢jpath]
associated with each path (Fig. 4.05).

Time B

Space

Fig. 4.05. Some paths between A and B

=y + 4y +3+re= Y dlpath].

paths

According to Feynman the amplitude for a p‘axl‘cibcular path is given by

1 sipath
¢[path]<xe" {pa ]’

where S$[path] is the classical action for the path and % is Planck's constant (divided by
2r). The proportionality constant, not written in the above equation, is the same for all
paths. The sum over paths is called a Feynman path integral and the approach based
on it is known as the path integral formulation of quantum mechanics. Let us sce how it
works.

First consider the classical limit: the results of quantum mechanics should approach

those of classical mechanics in the limit in which the action S is large compared to /. In
this limit the factor cxp(%S[path]) depends very sensitively on S. It oscillates extremely

rapidly with small changes in S, so contributions to the amplitude from neighboring paths
with slightly different S tend to cancel. The only paths which contribute significantly are
those for which neighboring paths have the same action S, that is those for which

85=0.

As we have seen, this is Hamilton's principle, which gives the classical path.
Next consider how the path integral formulation connects with ordinary quantum
mechanics, and in particular with the Schrédinger equation. This is an equation for the

wave function Y(x,t), the amplitude for finding the particle at x at time t. (The
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probability for finding the particle in the interval x to x + dx at time tis Ip(x,t)* dx.) The
time-dependent Schrédinger equation relates the amplitude at time t to the amplitude at a
slightly earlier time; it gives the time derivative of the amplitude. In the path integral

formulation the amplitude y(x,t) for finding the particle at x at time t equals the amplitude
Y(x -&,t-¢) for finding it at a point x ~& at a slightly earlier time t - ¢, multiplied by
the amplitude for it to go from (x - E,t - €) to (x,t), summed over all initial positions.
We are interested in the limit £ — 0. In this limit the amplitude for the particle to go from

(x-§,t-¢) to (x,t) can be approximated by the amplitude for it to travel along the single
constant velocity path connecting the two points. We then have

P(x, 1) = [ %e;SW(X -Et-¢),

where A is a normalization constant and
S~ [31 m(Efe)? - V(x)]z

is the action, to lowest order in &, for the constant velocity path connecting the points
(x-E,t—¢) and (x,t). We thus have

me? i

® (x)e
"q)(x,i)wJ %e”"e TR P(x -Et-¢g).

ink?
In the limit & — 0 the factor € 2" oscillates extremely rapidly, except when [E] is small,
less than something of the order of \[5875 . The dominant contribution to the E integration
comes from this small region about § = 0. We can thus expand the other factors in the
integrand in a Taylor series in ¢ and E, retaining terms up to first order in & and (to be
consistent) to second order in E,

® img? . 2
~ _d_E_ 2he _?lp.. _i _._ai _.I_M 2.
Wiy J AC [w o TRV T B RS T

-0

where the wave function and its derivatives are now all evaluated at (x,t). The integration
over E can be performed with the aid of the (Fresnel) integrals

) .

[ S T S N
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with the result

1 [2xire i in 8%y
- | A SUNDLE VNI &) YIS
AAak iy [1“( ot n w+2m6x2)8+ ]

To make the zeroth order terms in € agree, we must choose the normalization constant A to
be

A 2rihe
m
The first order terms in € then give
2 42
aw = _ﬁ_ a IP + Vw ,

which is the time-dependent Schrodinger equation.

Exercises

1. Consider a modified brachistochrone problem in which the particle has non-zero
initial speed v. Show that the brachistochrone is again a cycloid, but with cusp

h = v3/2g higher than the initial point.

2. A bead of mass m slides without friction along a wire bent in the shape of a cycloid
X =a(p-sing) y = a(l —cos¢).

Gravity g acts vertically down, parallel to the y axis.
(a) Find the displacement s along the cycloid, measured from the bottom, in terms
of the parameter ¢.
(b) Write down the Lagrangian using s as generalized coordinate, and show that the
motion is simple harmonic in s with period independent of amplitude. Thus the
time required for the bead, starting from rest, to slide from any point on the cycloid
to the bottom is independent of the starting point. What is thig time?

FEL A
3. Novelists have long been fascinated with the idea ‘Sf‘%{v‘c?rldv{dc rapid transit
system consisting of subterranean passages crisscrossing the earthi?/Public interest
in subtgrranean travel rose sharply when Time magazinel%tommented on a paper
by Paul W] Cooper, "Through the Earth in Forty Minutes" 113 This paper, while

N
1™ 3

9See Martin Gardner, Scientific American, September 1965, pp. 10-12, commenting on an article by L. K.
Edwards, "High-Speed Tube Transportation," Scientific American, August 1965, pp. 30-40.

107ime, February 11, 1966, pp. 42-43.

11paul W. Cooper, "Through the Earth in Forty Minutes,” Am. J. Phys. 34, 63-70 (1966).
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repeating some earlier work;}}?sewed as a catalyst for a number of other papers on
the subjecs!3to which you may wish to refer in working the present exercise. Take

the gravitational potential within the earth to be —12—(g/R)r2 where g is the
gravitational field at the surface and R is the radius of the earth (thereby neglecting
the non-uniform density of the earth).

(2) First show that a particle starting from rest and sliding without friction through a
straight tunnel connecting two points on the surface of the earth executes simple
harmonic motion, and that the time to slide from one end to the other is

1 = nR/g (= 42.2min) independent of the location of the end points.

(b) Now consider the curve r(8) the tunnel must follow such that the time for the
particle to slide from one end to the other is minimum. Set up the appropriate
variational principle, and show that

r?.

Ty
Jedr/dey? + 2VR? -2 {R*-13
is a first integral of the resulting Euler-Lagrange equation. Here r=rq at the

bottom of the wnnel (rg is the minimum distance to the center of the earth).
Rearrange this and integrate to obtain the equation of the curve,

omr{ (5 ] ror{fi)

where 8 is measured from the bottom of the tunnel. The angular separation
between the end points on the surface of the earth is thus given by
AB = n(l-rg/R).

(c) Introduce a parameter ¢ with

¢ _ |r-1f
tan— = )
o 2 R?-¢?
so ¢ =0 at the bottom and ¢ = =7 at the ends of the tunnel. Show that the
equation of the curve takes the form

2. %(R2 + r%) - %(Rz - r%)cosdl

6 = tan™ -I-{—tanﬂz -—Sg-d,) .
Show that this is the equation of a hypocycloid, which is the curve traced by a point
on the circumference of a circle which rolls without slipping on another circle.

12§¢¢ Philip G. Kirmser, "An Example of the Need for Adequate Refereaces,” Am. J. Phys. 34, 701
(1966).

13Giulic Venezian, "Terrestrial Brachistochrone,” Am, J. Phys. 34, 701 (1966); Russell L. Mallett,
"Comments on "Through the Earth in Forty Minutes',” Am. J. Phys. 34, 702 (1966); L. Jackson Laslett,
"Trajectory for Minimum Transit Time Through the Earth," Am. J, Phys. 34, 702-703 (1966); Paul W.
Cooper, "Further Commentary on ‘Through the Earth in Forty Minutes',” Am. J. Phys. 34, 703-704
(1966).
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@

In this case the larger circle is the great circle route, of radius R, connecting the end
points on the surface of the earth, and the smaller circle has radius a = %(R ~TIg)
(its circumference is thus the distance between the end points on the surface). The

parameter ¢ is the angle shown in the figure.
(d) Now consider the time dependence of the variables. Show in particular that ¢

varies linearly with time, ¢ = 2n(t/x), where T©= 'tmfl - (1'0/R)2 is the time to
slide through the minimum-time-tunnel from one end to the other. Compare T with
1, for end points 700 km apart on the surface.

An instructive exercise in the calculus of variations is the "minimum surface of
revolution problem™:

(a) Find the plane curve y = y(x) joining two points (0,yg) and (x;,y;) such that
the area of the surface formed by rotating the curve about the x-axis is minimum
(the Euler-Lagrange answer is y = acosh((x - b)/a), where a and b must be chosen
so that the curve passes through the end points).

(b) Using a computer or otherwise, draw representative members of the (one-
parameter) family of such curves which start at (0,1). Hence convince yourself that
if the final point is near the y-axis, two Euler-Lagrange curves pass through the
given end points, whereas if the final point is near the x-axis, no Euler-Lagrange
curves pass through the given end points.

(c) In this latter case the solution is the discontinuous Goldschmidt solution
composed of straight line segments (0,1)— (0,0) = (x;,0) = (x;,y;). In the
region where there are two Euler-Lagrange solutions, calculate and compare the
area given by the Goldschmidt solution with the areas given by the Euler-Lagrange



78

10,

Chapter IV: Principle of Stationary Action

solutions.- Which of the three gives minimum area? Does this depend on where in
the region the end point lies? (This last part is difficult; for guidance see Gilbert
Ames Bliss, Calculus of Variations, (published for The Mathematical Association
of America by The Open Court Publishing Company, Chicago, Illinois, 1925),
Chap. IV, pp. 85-127.)

The motion of a "free" particle of mass m on a surface is described by Lagrange's
equations with Lagrangian L =T = %m(ds/ dt)?. Show that the resulting equations
of motion are the equations for a geodesic, along which the particle moves at
constant speed ds/dt.

Find and solve the equations for geodesics on a plane, using plane polar
coordinates (r,¢) in terms of which the element ds of distance is given by

ds? = dr? + r2d¢2.

(a) Find and solve the equations for geodesics on the surface of a cone of half angle
a, using as coordinates the distance r from the apex of the cone and the azimuthal
angle ¢.

(b) Show that if the cone is cut along a line ¢ = constant and flattened out onto a
plane, the geodesics become straight lines.

Consider two points on the surface of a sphere. Without loss we may take them on
the equator at (8 = /2,0 = 0) and (8 = 7/2,¢ = ). The geodesics joining these
points are the two arcs of the equator. Nearby curves can be represented by

[+

0=x/2+ E a, sin(rnd/a)
n=l
where the deviation from the equator has been represented by a Fourier series
chosen to vanish at the end points. Evaluate the distance between the two points
along such a curve, valid to second order in the small quantities a. Show that for

0 <a <7 the distance is always longer than the distance along the equator,

whereas for m < « < 27 there are nearby curves for which the distance is shorter
than that along the equator, as well as ones for which the distance is longer than that
along the equator.

(a) Evaluate the action S[x(t)] for a free particle along the path:
"from (Xg,tg) to (x’,t') at constant velocity, and then
from (x’,t'") to (x;,t;) at (a usually different) constant velocity."
() Consider S as a function of a parameter x’. Show that minimum action results
when x’ is chosen so that the velocity from (Xg,tg) to (x',t") is the same as that
from (x',t') to (x;,t,), so that the full motion is at constant velocity.

Fermat's principle states that light travels from one point to another along the
trajectory which makes the travel time a minimum.
(2) Use Fermat's principle to derive the law for the reflection of light from a mirror,

namely
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" angle of incidence = angle of reflection”
(b) Use Fermat's principle to derive Snell's law for the refraction of light passing
from a medium in which the speed of light is ¢/n, to a medium in which the speed
of lightis ¢/n, (c is the speed of light in free space and n is the index of refraction),
namely
ngysingg = nysing,.
Here ¢, and ¢, are the angles to the normal of the incident and refracted rays.

Jacobi's principle states that a particle of mass m and energy E in a potential
V(x,y,z) travels from one point to another along a trajectory which makes the
integral fp(x,y,z)ds, where p(x,y,z) = 4/2m(E - V(x,y,z)) is the magnitude of
the momentum, stationary (for further details, see Chapter VIID).

(a) Consider projectile motion in the (x,y) plane with x horizontal and y vertical,
and with potential V = mgy where g is the (constant) gravitational field. Write
down the Euler-Lagrange equation which results from Jacobi's principle, and
integrate to obtain the equation for the trajectories.

(x - xo)2
4hcos’a
E = mgh is the energy, and a is the angle of launch)

(b) Sketch the family of trajectories which start at (0,0) with fixed energy E = mgh
but arbitrary angle a of launch. Show that if the end point lies within the envelope
y=h- (x2/4h) of the family of trajectories, two trajectories connect the start and

end points, whereas if the end point lies outside the envelope, no trajectories
connect the start and end points.

(Ans. y-yg=(x-Xg)tana - where (Xg,¥o) is the start point,

A particle moves vertically in the uniform gravitational field g near the surface of the
earth. The Lagrangian is

L= %miz - mgz.
Suppose that at time 0 the particle is at z =0 and attime t; itisat z=z; . For any
motion z(t), actual or virtual, between these two points the action is

S[a(v] = [[' Lz 2)dt.
Pretend you don't know what the actual motion is. You might then guess that it can
be adequately represented by the first three terms in a power series in t,
z =179 + Vot +at?,
where zg and v are chosen so that z(t) passes through the end points, and a is an

adjustable parameter. Evaluate S for this form of z(t) and note the dependence of
S on a. For what value of a is S a minimum?



CHAPTER V

INVARIANCE TRANSFORMATIONS
AND CONSTANTS OF THE MOTION

In this chapter we explore the remarkable connection between symmetry, the
invariance of a system under transformations, and conservation laws, the existence of
constants of the motion. This relation usually goes by the name Noether's theorem:l:
Of special importance is the symmetry of any closed system under the space-time
wransformations, which allows us to infer the conservation of linear momentum, angular
momentum, and energy, and the center of mass theorem -- this without knowing the
detailed equations of motion {or the system.

Invariance transformations

One of the great advantages of Lagrangian dynamics is the freedom it allows in the
choice of generalized coordinates. If q, is a set of coordinates, then any reversible point
transformation

Qs = 9;(qp. 9530

defines another set q,. This new set satisfies Lagrange's equations of motion with new
Lagrangian

L'(q.9,0) = La@@’,1.4(q".q". 1. .

This equation states: to obtain the Lagrangian L' for the new coordinates, use the inverse
transformation equations to express the old coordinates and their time derivatives in the old
Lagrangian L in terms of the new coordinates and their time derivatives; the resulting

function of q', §', and tis the new Lagrangian L'.

Although the general form of Lagrange's equations of motion is preserved in any
point transformation, the explicit equations of motion for the new variables usually look
different from those for the old variables; they cannot be obtained simply by replacing old
variables by new. However, for a given system there may be particular transformations for
which the explicit equations of motion are the same for the old and new variables. The
gquations of motion (or the system) are then said to be invariant under these
transformations, and such transformations are called inyariance transformations. A

transformation is certainly an invariance transformation if the Lagrang:an 1tself is invariant,

L'(@.q"t) = L(q",d"1);

1E. Noether, "Invariante variationsprobleme,” Nachr. Akad. Wiss. Gattingen, Math.-Phys. K. Il 1918,
235-257 (1918); an English transiation by M. A. Tavel is available in Transp. Theory Stat. Phys. 1, 186-
207 (1971); a good review is E. L. Hill, "Hamilton's Principle and the Conservation Theorems of
Mathematical Physics,” Rev. Mod. Phys. 23, 253-260 (1951).
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that is, if the new Lagrangian is the same function of the new variables as the old was of
the old. This, however, is too restrictive. If we only require that L’ and L lead to the
same explicit equations of motion, this is still the case if L'(q’.q",t) differs from

L(q’.q’,t) by a term which gives zero identically (independent of q’(t)) when substituted
into Lagrange's equations. Such a term has the form

dA(q ) E LA
“ aqa ot
The condition for invariance is thus

dA(g' D)

L'(q.q 0 =1(q.q" ) + ——— o

where A is some function of q' and t which is determined by the transformation.

Combining this with the definition of L', we can write the condition for invariance in the
form

. )V oer dA(g’,t
L(q,4.t) = L(g"4 ’”*"‘”(E%"_)'

We can use this to check whether or not a given -transformation is an invariance
transformation.

Free particle (a)

The motion in one dimension x of a free particle of mass m is described by the
Lagrangian

1,22
L=5mx .

Let us consider the possible invariance of this system under a transformation of the form
xX'=x+a X'=X+4

where a may be some function of time. We construct the Lagrangian L’ for the new
coordinate X',

L'(x, %', ) = dm(x' - 4)7 = L(x',X",t) - max’+ $ ma’.

In order for this transformation to be an invariance transformation, the 1ast two terms must
be the total time derivative of some function A(x',t). This requires that
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9A -md and 9 -é-méz.
ax’ ot
Together these imply & = 0, which in turn gives
a=ou+ft A-——me’+-%m62t

where a and P are arbitrary constants. The most general invariance transformation of the
above form is thus

X'=x+a+ft

and consists of spatial displacement for B =0, and Galilean transformation
(transformation to a coordinate system moving with a uniform velocity with respect to the
original system) for f§ = 0. These are the well-known ard expected invariances for a free
particle. It is worth noting that a transformation to a uniformly accelerating frame is not an
invariance transformation. This is also clear from Newton's second law, since in an
accelerated frame there are so-called inertial forces (not due to the presence of nearby
matter) which are not present in an inertial frame,

Infinitesimal transformations

Many transformations, such as the one just discussed, contain adjustable

parameters "o." Further, they are such that for particular values a° of the parameters the
transformation reduces to the identity, thus

QL = qL(q;out) with q3(g;a®;t) = g,.

Transformations for which the parameters are infinitesimally close to o, and for which
the new coordinates q, differ infinitesimally from the old coordinates q,, are called
infinitesimal transformations. For these we have

Q, = ag +da, and q;=q,+08q, where dq, = 2(2&) da,,.
0

v v

Of special interest are the infinitesimal invariance transformations, for which

) . . ddA
L(g,q,t) = L(g +8g,q + dq,t) + T

Expanding this to first order in the small quantities 8q anéi1 0q and rearranging the result,
we obtain
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df & el V' LloL d(aL)
—1 Y ——0q, +0A |+ ) | —~—| —]|8q, = 0.
dtl;.laqa ) 321 dq, dt\dq, )|

The second term vanishes if the generalized coordinates q, satisfy Lagrange's equations of
motion, and therefore the quantity

oL

.

aml qQa

dg, +0A

is a constant of the motion. This combination of the generalized coordinates q,, the
generalized velocities §,, and the time t remains constant as the system develops in time.
We thus have the important result:

Associated with
any infinitesimal invariance trarsformation
is
a constant of the motion.

The fact that the generalized momentum associated with a cyclic coordinate is a
constant of the motion, which we noted earlier, is a special case of this result. For if g, is
a cyclic coordinate, it does not appear in the Lagrangian, and the Lagrangian is invariant

under the transformation q, = q, + @ where « is an arbitrary constant. The constant of the
motion associated with the corresponding infinitesimal transformation is (3L/8q,)da, the
generalized momentum (times da).

Free particle (b)
We have seen that
X'=x+a+ft

is an invariance transformation for a free particle in one dimension. It depends on the two

parameters o and f and reduces to the identity transformation if the parameters are zero.
The comresponding infinitesimal transformation is

x'—x=0x=da+tdp.
The new and old Lagrangians differ by d(8A)/dt where

OA = -mx 4B,
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To obtain dA from the A given earlier, we have replaced f by & and retained only first
order terms in 8§ ; we have also 1ecplaced x’ by x, the difference between these contributing
only (negligible) second order terms to dA.

~ Associated with this infinitesimal invariance transformation is the constant of the
motion

mx (Sc + 18B) -~ mx Op = mx da + (mx t — mx)5f3.

Associated with spatial displacements is linear momentum mx, and associated with
Galilean transformations is mxt — mx; this second constant is —m times the initial position
of the particle.

Space-time transformations

Newtonian space is homogeneous (the same at all points) and isotropic (the same in
all directions), and Newtonian time is homogeneous. Further, Newtonian space remains
unchanged under Galilean transformations (transformations between frames moving with
uniform velocity with respect to one another). Thus a closed system (one not interacting
with other systems) behaves the same no matter where it is located, how it is oriented,
when it is started, or whether or not it has a uniform velocity. It is invariant under the
space-time transformations of spatial displacement, spatial rotation, time displacement, and
Galilean transformation. These trausformations can be looked at from one of two
perspectives:

(a) the passive point of view in which we imagine describing the system from two
frames of referénce whtchrdre displaced, rotated, etc. relative to one another (or imagine
two such observers). The sysigm tgmains unchanged. Up to this point, we have been
using the passive interpretation. e

(b) the_active point of view in which we imagine displacing, rotating, etc., the
system (or ilternatively, wé compare two identical systems which are displaced, rotated,
etc. relative to one another). The observer remains unchanged. The mathematical
formalism is the same, regardless of the perspactive.”

Associated with each space-time invariance is a constant of the motion. These
constants are of special importance, since they apply to any closed system. Further, if the
system can be split into two non-interacting parts, the constant for the system is the sum of
the constants for the individual parts, since the Lagrangian for the system is the sum of the
individual Lagrangians. The constants are additive. These constants are of great use in
analyzing processes, such as collisions, for which we have incomplete knowledge. Asa
specific example we consider a closed system of N particles interacting with one another
via potentials which depend only on the distances between the particles. The Lagrangian is

N N N
L= E%milhtz—%zEVij(lri -r;h)

=] 1= =1
1# ]
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Spatial displacement

Suppose we view the system from a new coordinate frame which is displaced an
amount —a with respect to the original frame (Fig. 5.01(a)). Alternatively, we displace the
system an amount a (Fig. 5.01(b)).

(b)

Fig. 5.01. Spatial displacement (a) passive, (b) active

From either point of view we have

3

, . .
ri=r,+a r,=r;.

The Lagrangian itself is invariant under this transformation. The constant of the motion
associated with the corresponding infinitesimal transformation is

N N
g—i-éa -Emii'i ‘8a=P-da
195 i=1

N
where P = E m,r; is the total linear momentum of the system. Note that we reach this

1=l
conclusion without knowing the specific form of the interaction Vi (Ir; - rjl).

Spatial rotation

Suppose we view the system from a new coordinate frame which is rotated with
respect to the original frame through an angle -0 about the z-axis (Fig. 5.02(a)).

Alternatively, we rotate the system through an angle 8 about the z-axis (Fig. 5.02(b)).
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(b)

Fig. 5.02. Spatial rotation (a) passive, (b) active

The coordinates are related by

X' = xcos0 - ysinb
y’ = xsinf + ycosf

z'=7.

The Lagrangian itself is invariant under this transformation. The corresponding
infinitesimal transformation is obtained by replacing 8 by a "small" 80 and noting that
cosd0 =~ 1, sindb ~ 30 ; thus

X' —x=0x=-ydd
y' —y =0y =x08

7=z,

The associated constant of the motion is

N N
oL oL = . .
E(—&Tyi 00 + 5‘7)(3 be) = zmi(—yixi + X‘,yi)ae = in‘)G
where L, is the z-component of the total angular momentum. Similarly, invariance under
rotations about the x and y axes leads to constancy of the x and y components of the total
angular momentur.

Indeed, we can consider all three components together, specifying an infinitesimal

rotation by a vector 68, which represents a rotation through an angle |66{ about an axis
56/}582> Sec Fig. 5.03.

2This does not work for finite rotations, since a finite "rotation” @, and a finite "rotation” 6, do not add
like vectors.
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Fig. 5.03. Infinitesimal rotation

We have
r-r=0r=00xr,

and the constant of the motion associated with this infinitesimal invariance transformation is

N sL N
—0r. =y m.r, 00 xr; =1,-50
a 1 171 1
R =1
N
where L = Eri x m;r; is the total angular momentum of the system.

i=1
Galilean transformation
Suppose we view the system from a new coordinate frame which is moving with a

uniform velocity -v with respect to the original frame (Tig. 5.04(a)). Altematively, we
Zive each of the particles of the system an additional velocity v (Fig. 5.04(b)).

(b)

Fig. 5.04. Galilean transformation (a) passive, (b) active

The coordinates are related by

I =r;+Vt =T +V.
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The new Lagrangian is given by

z

N
EVU(Irg = Vt-r +vtl)
j=1

N N
=L(q".q") - Emit; Y+ E%milvl2 .

1=1 1=1

N
L'(qg".q",t) = E%mifi‘{ - vlz—%

i=] L=

—

. In this case the Lagrangian is nos invariant; however, the equations of motion are, since the
last two terms can be written as the total time derivative of the function

N N
A= -E m;r} v+ E%milvlz t.
1=1 i=1

The constant of the motion associated with the infinitesimal invariance transformation is
N oL N
Eg-bri +OA = Y (myfit - myr;) v = [Pt~ MR, ]-9v
i=] 1 1=

N N
where M = Emi is the total mass and R, = Emiri /' M is the radius vector to the
i=1 i=1

center of mass of the system. We thus have
R, ()= R, (0) + (P/M)t,

where we have written the "constant of the motion” as ~MR_, (0). The quantity R (0)

can be identified as the radius vector to the initial (t = 0) location of the center of mass.
This is the center of mass theorem: the center of mass of a closed system moves with
a constant velocity

Ry _y P

MBem

a YRy

It allows us to treat, for many purposes, systems of particles as though they were a single
particle with mass M, location R_,, and momentum P =MV, .

Time displacement

We have not yet considered invariance under time displacement. The reason is that
this transformation involves changes 1o the independent vanable t, and the formalism we
have developed to this point is only capable of handling changes to the dependent variables

Q.- We shall make the appropriate generalizations in the next section, but since the
considerations there are rather lengthy, we give here a brief independent discussion
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applicable to this particular case. Let us consider the (total) time rate of change of the
Lagrangian,
f f .
dL oL . oL dq, dL
@ 2w 2w
a=19a a19da t

The second term can be rewritten

df&aL . \__d_/éam_
ol &g, ™) " al o)™

and thus the equation for the time rate of change of the Lagrangian can be rearranged in the
form

df&LaL . )Y &feL dfeL))y. oL
azkz'a—q:%‘L)“‘Eka‘q:*at(s'q:)}%?

Now if the generalized coordinates g, satisfy Lagrange's equations, the first term on the
right is zero, and we are left with

where

a2y, oL

aml Qa

is called the Hamiltonian@ If the Lagrangian is the difference of the kinetic and potential
energies, L = T -V, and if the kinetic energy is a homogeneous quadratic function of the
£

f f
generalized velocities, T = > > Agd,4p - then > (9L/84,)4, = 2T and
a=lb=] am}

H=2T-(T-V)=T+V.

In this case H is the total energy. In any event, it may be thought of as a "generalized
energy." The above equation shows that if the Lagrangian does not depend explicitly on
time, so that the equations of motion are invariant under time displacement, then the
Hamiltonian is constant in time.

3Strictly speaking, the Hamiltonian should be expressed in terms of the appropriate variables, which tum
out to be the generalized coordinates and momenia, as we discuss more fully in the next chapter.
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Covariance, invariance, and the action

The principle of stationary action summarizes the dynamical behavior of a system in
a compact and elegant way. It thus provides a convenient foundation on which to base a
general discussion of the ideas of covariance, invariance, and their connection with
constants of the motion. We give here a self-contained account of these aspects of classical
mechanics from this unified point of view, even though many of the ideas have already
been discussed, at least for special cases. In order to avoid unnecessary clutter, we
consider explicitly a system with one degree of freedom. The generalization to many
degrees is trivial; all we must do is to insert a few subscripts and summation signs.

We are interested in the effect on paths C in configuration space, and on the action
S[C] for such paths, as a result of subjecting configuration space to an extended point
transformation

q' =q'(g,1) t'=t'(q,t)

involving both the dependent variable, the generalized coordinate q, and the independent
variable, the time t (Fig. 5.05). :

14 ' y t C ¢
(q,0.(q",t @ @q’,t")
q' b q
@ ° (b)

Fig. 5.05. Transformation of configuration space (a) passive, (b) active

As with the linear space-time transformations, we can interpret this in one of two ways:

(a) the passive point of view in which we picture (q',t) and (g,t) as the
coordinates assigned to a single physical point by two observers, "prime" and "unprime."
From this point of view, the transformation amounts simply to a change of the variables
used to describe the systent.

(b) the active point of view in which we picture system points (q,t) as being moved
to new locations (q'.t"), and hence system paths C as changed into new paths C'. The
observer remains unchanged.

It is convenient to begin by adopting the passive point of view. Let us suppose that
path C is a possible actual motion of the systern. The action

S[C) = ﬁ 'L(q,dq/dt, t)dt

for C, as expressed by the unprime observer, is stationary when compared with that for
neighboring paths with the same cnd points, and C is given as a solution to Lagrange's
equation
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o).
dt\ a(dg/dr); dq

For the prime observer the path C is still a possible actual path; the action has the same
value as for the unprime observer and is stationary. We are simply changing variables.
However, the prime observer writes

S{C}nf,l L'(q’,dg’/dt’,t)dt’
Ly
with
L'(q',dq’/dt’,t")dt’ = L(q,dq/dt,0)dt.

This equation states: use the transformation equations to express the unprime variables on
the right-hand side in terms of the prime variables: this gives the Lagrangian L’ = (dt/dt")L
as used by the prime observer. In general L' has, as a function of ¢, q',and t', a

different functional form than L has of q, G, and t. Further, because of the factor (dt/dt’),
its value at a given physical point is, in general, not the same for the two observers. To
describe the path C, the prime observer writes

G-
di'\ a(dg'/dr); 8y’

again Lagrange's equation, with new variabies and a new Lagrangian L’. We say that
Lagrange's equation is covariant, maintains the same general form, under arbitrary
transformations of the dependent and independent variables. Thisisa generalization of our
earlier results, which considered transformations of the dependent variables alone.

The explicit equation of motion written down by the prime observer does not in
general look the same as that written down by the unprime observer; it cannot be obtained
simply by replacing unprime variables by prime. For particular transformations, however,
it may turn out that the equations do have the same explicit form. If this is so, we say that
the transformation is an invariance transformation. The observers are then equivalent.
Our previous considerations show that we have invariance if

L'(q',dg'/dt’, ) =L(q’,dq'/dv',t') + dA/dY".

The consequences of invariance can now be worked out by combining this with the above
definition of L’ and proceeding along lines similar to those at the beginning of the chapter.

It is, however, more interesting to approach invariance by considering the action
and what happens to it under an extended point transformation, now looked at from the
active point of view. The transformation

qQ' =q'(q,1) t'=t'(q,t)
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from the active point of view carries system points into new system points and system
paths into new paths. /f the transformation carries possible actual paths into other possible
actual paths, we say that it is an invariance transformation. Let us suppose that C is an

actual path and that C’, the path obtained from C by active transformation, is also a
possible actual path. Path C has the property that the action for it

S[C] - f:’ L(q,dq/dt,t)dt

is stationary when compared with that for neighboring paths with the same end points. For
invariance, the action for path C’

S[C'] - ﬁ‘,‘L(q',dq'/dt',t')dt'

must be stationary when compared with that for neighboring paths to it (note that the
Lagrangian is L; there is only one observer, looking at two different paths). S[C'] can thus
differ from S[C] by at most a term which gives zero under all fixed end point variations.
Such a term can be a function only of the end points, and the additive property

S[0 — 2] = §[0 — 1]+ §[1 — 2]

of the action further restricts this function to the form
~[AG1. 1) - AQh.t)] = ~[AT}.

(Compare the argument used in elementary mechanics in introducing the potential energy.)
Invariance thus requires that the difference of the actions

O ll’ ] .
A$=8IC']-S|C] = [ L(¢",dq’/dt’,t)dY’ -f L(q,dq/dt, t)dt
1 1
for the original and transformed paths C and C' be given by
AS = ~[AJj .

This may be taken as the condition for invariance, now expressed in terms of the action.
To continue the discussion, let us now consider two arbitrary neighboring paths
with corresponding points connected by the infinitesimal transformation (Fig. 5.06)

Q' =q+4aq(q,t) t' =t +At(q,t)

where Aq and At are "small," and let us work out the difference in the action for the two
paths. We use A rather than & to denote the infinitesimal changes, since we wish to reserve
d for a virtual (time-frozen) change.
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Time

Space
Fig. 5.06. Infinitesimal transformation of configuration space
We need
dq' = dq + (dAq/dt)dt and dt' = (1 + (dAt/dt))dt.

(note the total time derivative (d/dt) = (9/3t) + 4(3/3q)). Together these yield the relation
between the generalized velocity at corresponding points on the original and transformed
paths

dq’ _(,,9A0\"'(dq dAqy _(, dAt\dg dAq
d' \ 7 dt) \at a ) dt/de d

Note that the change in the generalized velocity is no longer simply the time derivative of
the change in the generalized coordinate. The difference in the action for the two
neighboring paths now follows -

4

o[ [e(asta(1-9A0 88, 409 )y, L8 1 (g 4
* L,[L(q S STy e A[)\“ dt / L(q’dt’t)]dt'

Expanding the integrand via Taylor's theorem, we obtain to first order in the small
quantities Aq and At

4
AS - %Aq+-a—lf(9—é9-—qgé5)+g£m+L% d.
. 199 ag\ dt dt at dt

Integrating the second and fourth terms by parts, we then get

t, 4
AS - "’—L-u-i(ﬁl_:) Aq+ i(ﬁl;q)J,iIi-i': At|dt+ -a—l_‘Aq-(iq-L)At

. oq dt\dq dt\ dq gt dt aq aq .

Q0
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The coefficient of At in the integrand can be written —(-‘2& - —d-(i[i))qm, so we finally

aq dt\aq
" aL aL t
AS = dt + —_-Aq-(-—,—q-L)m .
" 99 aq ' 6

This result is general, applying to any two neighboring paths in configuration space. If the
viiginal path is a possible actual path satisfying Lagrange’s equation, the integrand is zero
and the expression for AS simplifies to

find

L. d /oL ;
(S 5(5) raa-amo

We can simplify this still further by noticing that the ¢oefficient of Aq is the generalized

momentum p, and the coefficient of At is the Hamiltonian H, so we end up with the
compact and beautiful result

AS =[pAq - HAt]!.

This result has many uses, and we shall return to it again. For the present we note
that if the transformation is an infinitesimal invariance transformation, we can combine the

result with the condition AS = —[AA]:; to find

[pAq - HAt + AA]:: =0.

That is, the quantity in square brackets is constant in time, and we can say:

Associated with the infinitesimal invariance transformation
q'=q+Aq(q.1) t' =t + At{g,t)
is the constant of the motion
pAq - HAt+ AA.

This is the generalization of our previous result to include transformations which change
the independent variable t. We can use it to derive again the connection between invariance
under time displacement and conservation of energy. If the Lagrangian does not depend
explicitly on the time, the system is invariant (with A = 0) under time displacement

q' =q t' =1+ At,
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where At is any constant. The associated constant of the motion is —HAt, "generalized
energy” or "Handiltonian" (times —At).

We have now achieved our main objective of seeing the connection between
invariance transformations and constants of the motion from the point of view of action.
However, the result for the difference in the action for two neighboring paths, say C and
C', is sufficiently interesting that it is worthwhile to give a different, perhaps simpler,
derivation. This time let us use the same time variable t for both paths. Corresponding
points on C and C' are now at the same time (so this is now a virtual displacement) and
their generalized coordinates are related by (Fig. 5.07(a))

q' = q+dq(q.t).

Note that for given q and t this is not the same infinitesimal spatial displacement as before.
The relation between it and the earlier space and time displacements Aq and At can be seen
from Fig. 5.07(b), thus

dq = Aq - QAt.
(q;.tD) ]
Time Time
(9.t Q1) )
' ,t'
@outo) (qo-to)
@) Space ) Space

«

Fig. 5.07. Infinitesimal transformation of configuration space
(a) viewed as a virtual displacement
(b) relation to previous point of view

The difference in the action for the two paths is now given by

L e l
AS =Jf6 L(q’,dq’/dt,t)dt "_ﬁeL(q.dq/dt,t)dt,

The first integral can be broken up into three pasts, Jj - jf s J‘: - ﬁl °, the range of the first
Q Q 1 1]

part matching that of the second integral, and the last two parts arising from the
(infinitesimal) shifts in the limits. For these the integral is simply the Lagrangian L times

the shift At =t'~t, so we have
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AS zﬁ“[uq’,(\iq’/d[,t) - L(q,dq/dl,l)]d[ +[LAt}::).

The integrand can be written (compare our earlier discussion)

e - S ) o S5
¢ [e]e

dq dﬁq ‘\ RE d4
J g aq dt |aq  di\ag di\ aq

Liq+0q, 3,84,
VAT T Y

- L<q,

The first term is zero if g is an actual path, and the second term is a total time derivative, so
we find

Y

oL |
AS = g.—bq + LAt
dq .
]
Finally, recalling that 8q = Aq - (jAt, we recover the relation AS = [pAq - HA[]:‘ .
Q
Exercises
I. Show that a function of qit), ¢(1), and t satisfies Lagrange's equations identically

(independent of q, (1)) if, and only if, it is the total time derivative dA/dt of some
Zunction A(g(t),t).

2. The motion of a particle of mass m which moves vertically in the uniform
gravitational field g newr the surface of the earth can be described by an action
principle with Lagrangian

Ml
L =4mz® - mgz.
(a) Show that the action principle is invariant under the transformations
(i} 2" = z + & where «is any constant;
(i) z' = z+ Bt where [§ is any constant.
(b) Find the associated constants of the motion.

3. The motion of a simple harmonic oscillator is described by an action principle with
Lagrangian

1 2

L= %mx2 -fmu)zx
(a) Show that the action principle is invariant under the ;wo-parameter (A, B) family
of transformations

'

Xx'=x+ Asinwt + Bcoswt.

(b) Find the two independent constants of the motion associated with the
infinitesimal ransformation, und identify them physically.

(¢) Use the results of (b) 1o write down the general solution to the equation of
moton.
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The Lagrangian for a particle of mass m and charge e moving in a uniform magnetic
field which points in the z-direction is (see exercise 3.14)

L=imG? + 3% + 25 + (€B/20)(xy - y4).
(a) Show that the system is invariant under spatial displacement (in any direction)
and find the associated constants of the motion.

(b) Show that the system is invariant under rotation about the z-axis and find the
associated constant of the motion.



CHAPTER VI
HAMILTON'S EQUATIONS

Our studies in mechanics to this point have been largely based on Lagrange's
equations. In this chapter we replace Lagrange's equations, which are a set of second
order differential equations, by an equivalent set of first order equations, Hamilton's
equations. The simple form and high degree of structure of these latter equations makes
them most suitable for our subsequent studies in advanced mechanics.

Hamilton's equations

In Lagrangian mechanics a system of f degrees of freedom is described by f
generalized coordinates (q;.q;.....q;) which Satisfy Lagrange's equations

dfaL) oL
dt\aq,) dq,

a setof f second order differential equations for the coordinates. Lagrange's equations, or
indeed any set of f second order equations, can be replaced by an equivalent set of 2f first
order equations. There are many ways in which this can be done. One way is to introduce
as new independent variables the generalized velocities v, = §,. Lagrange's equations

then become

4@y dl@vy 3 L dvy L ) &L oL
dt\ av, 3a, Zl\dvydv, dt  dguav, °)  adv, dq,

which, together with the equations

constitute a set of 2f first order equations for the 2f variables (q,,v,). These equations are

not particularly attractive. The time derivatives of the v's in the first f "v-equations” are
mixed up, and the other terms in these equations are messy. The form of Lagrange's
equations suggests that more suitable choices for new variables are the generalized
momenta

dL
dd,

Pa
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Recall that for a particle of mass m moving in a potential V and described by cartesian
coordinates, the generalized momenta are the ordinary linear momenta. The definitions

p, = dL/8q, can be inverted (provided det192L/0d,,04, 1= 0, which is usnally the case!)
to give

. dg,
9% "7

= Fa(q'p-t)-

‘Lagrange's equations themselves can be written

dp, 9L
_'__""——’G > atv
&t 5, 2(@.p.0)

where in the second equality the §'s in 8L/dq have been replaced by the F's. Together
these form a set of 2f first order equations for the 2f variables (q,.P,)- In these equations
the derivative of each variable in turn stands alone on the left. This in itself is not
remarkable; the same could be accomplished for the set (q,,v,) by multiplying the v-

equations by the matrix reciprocal to azL/ dvydv,. What is remarkable, as we now show,

is the simple structure of the functions F, and G,.
Introduce the Hamiltonian .

f
H(g,p.t) = 2 Pada ~ (04,0

a=]

in which we have used p, = 0L/dq, to express the §'s on the right-hand side in terms of

the q's and p's. The Hamiltonian H is thus a function of the q's and p's (and possibly also
of t explicitly) and does not contain their time derivatives. From the definition of H we
have

f .
aLy .. gL

dH = 2 1.dp, + -—|dgq, ~—d

a_l[q Pa (Pa 6(-'1,,) Ja aq. qa

In this equation we should really express dq in terms of the dq and dp, but this turns out
to be unnecessary since the coefficient of each of the dq, is zero. We are left with

£

oL gL
dH = 4 dp. ———da, | - —dt.
az-l{qa Da 3, Qa] pn

On the other hand, since H is a function of g, p, and t, we have

IFor what to do if this is not the case, see E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A
Modern Perspective (John Wiley & Sons, New Yark, 1974), Chapter 8.
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f
H
dH = 2 ot dq, +-('ﬁdp.a +—(?——dt.
i dp. ot
Comparing the two expressions, we see that
. oH oL ¢H oH 4L
s ap, dq,  dq, at at -’

Note that " 8/dq " in the second of these equations means different things on the two sides
of the equation. On the lefi-hand side it means "differentiate with respect to q holding ¢
fixed"; on the right it means "differentiate with respect to q holding p fixed." The
Lagrangian L is to be regarded as a function of q, q, and t; the Hamiltonian H is to be
regarded as a function of q, p, and t. When we differentiate, we must hold the appropriate
quantities fixed. The equations for the 2f variables (g,,p,) can now be written

G o o
dt  dp, dt aq,

This set of 2f first order equations for the 2f variables (q,,p,), with its remarkable
symmetry and structure, is known as Hamilton's equations. We see that the functions
F, and G, can be obtained from a single function, the Hamiltonian H, by differentiation
with respect to p, or q,. Note also that the coordinates q, and momenta p. appear in
Hamilton's equations on an essentially equal footing; the general form of Hamilton's
equations remains unchanged if we replace g, by p, and p, by —q,. This is an example

of the transformations which we study in detail in Chapter VIL
Using Hamilton's equations we can easily show that

dH _oH

dt  at’

so that if the Hamiltonian does not depend explicitly on time, it is a constant of the motion.
We have already noted this useful fact in Chapter V.

Hamilton's equations form the starting point for practically all investigations in
advanced mechanics, indeed to such a degree that the equations are often called the

canonical equations of motion. The set of 2f variables (q,,p,) are then called the
cancpical variables; the generalized coordinates q, are the canonical coordinates;
the generalized momenta p, are the canonical momenta conjugate to q,.

The 2f dimensional space of the canonical variables (q,,p,) is called phase
space. The complete dynamical state of a system at any instant of time, say at some
“initial" time ty, is represented by a point in phase space. As time goes on, this point
moves, tracing out a unigue trajectory. There is thus just one trajectory through each point

in phase space; the phase space trajectories do not intersect. The complete collection of
phase space trajectories (or a representative number of them) provides a phase space
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portrait. Such portraits are very informative, particularly for one degree of freedom where
they are easily drawn, and enable us to form an overall picture of the dynamical behavior of
a system.

Plane pendulum

Fig. 6.01. Plane pendulum

Consider once more the plane pendulum (Fig. 6.01). The Lagrangian is

L = +mé*6% + mgcost.
The momentum pg conjugate to 0 is
L - o
= —— = l
Pe = 55 = méd
and is physically the angular momentum about the point of support. The Hamiltonian is

H=pgh-L= %m!zéz —-mgécosB

and is physically the total energy. Of course we must express H in terms of the proper
variables 6 and pg. This is easily done by using the definition of pg to express 8 in terms
of pg. We then get H in the required form,

P’
H= - mglcosH.
2m¢? §

Hamilton's equations are

Ei_e__a_H_.,—E% ii-Eﬁ-—g_ﬂ:—mgfsinB.
dt dpg mé dt 0

Since the Hamiltonian does not depend explicitly on time, it is a constant of the motion.
The trajectories of the system in the (8,pg) phase space are thus given by
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P92

2mé?

~mglcosO =E

whire E, the energy, is the constant value of the Hamiltonian. These trajectories are shown

in Fig. 6.02 for various values of the energy. Note that in Fig. 6.02(a) 8 = = and 6 = —x
are the same physical point, so we should imagine Fig. 6.02(a) rolled into a cylinder and
joined along the dashed lines. When a moving phase point "leaves" Fig. 6.02(a) at

(6 = 7, pg), it instantaneously "re-enters" at (8 = Fx,pg). Alternatively, we can imagine
Fig. 6.02(a) repeated over and over in the 6-direction, as in Fig. 6.02(b).

Oscillation (-mgé<E<mgt)
Separatrix ( E=mg? )
Pg | Rotation (E>mgé ) Py

Elliptic point

Hyperbolic point

(a) (b)
Fig. 6.02. Phase space for the plane pendulum

The minimum value of E is -mg¢ and corresponds to the pendulum hanging
| !
vertically (6 = 0) at rest (pg = 0). For E +mg¢ small compared to mg¢, 8 and pg Stay
close to (0,0) and we can expand cosB =] - 62/2 to give '

2
Po 1 2
—— + —mgf° = E + mgl.
2mé? 2 & 5

These low-energy phase space trajectories are ellipses around (0,0) and correspond to the
usual oscillatory motion of the pendulum with 8 and pg out of phase by /2. The point
10,0) is sometimes called an elliptic point; it is a point of stable equilibrium. As the
energy is increased, the amplitude of oscillation increases, until at E = mg# the pendulum
is barely able to reach 8 =z (with pg=0). For E>mg¢ the motion is no longer
oscillatory but rotational, with the pendulum swinging round and round over the top. The

phase space curves with E = mg? which separate these two types of motion are called the
separatrices. They would seem to violate (at the point (+x,0), seen most conveniently
in Fig.;6.02(b)) the statement that only one phase space trajuctory pass through any given
point. : If we look more closely at the region around (xm,0) (see Fig. 6.03(b)), however,
we scé{ that it consists of the following trajecteries: the point itself, two "ends” of the

i
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separatrices which approach the point as a limit, but do not reach it in finite time, and two
similar ends whigh recede from the point. Other nearby trajectories are hy, las, as can
be seen by expanding the equation for the trajectories about the point (£x,0),8/
Py’ 1 2
-—mgé(zx-0)° ~«E - mgl.
i 278 ( ) g
The point (+x,0) is sometimes called a hyperbolic point; it is an point of unstable

equilibrium. The features of elliptic and hyperbolic equilibrium points are summarized in
Fig. 6.03. :

(@ ®
Fig. 6.03. Phase space near (a) an elliptic point, (b) a hyperbolic point

Spherical pendulum

gl 1O\ ¢
|

| m
et
b
20 SRR
7/
Fig. 6.04. Spherical pendulum
The Lagrangian for the spherical pendulum (Fig, 6.04) is

L = $mé?(6? + $*5in*0) + mglcosh.

The canonical momenta conjugate to 8 and ¢ are

2Alu:matively, one can obtain this by reversing gravity in the preceding equation,
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oL 2 dL 2.2,
= — = mfB =—=m{ sin“ué,
Pg P m Pe % m¢“sin“Y¢

and the Hamiltonian is

2

- . 2
H= %m@z(ez +?5in?0) — mglcosf = L8 5+

¢
- mgflcosh.
2mf?  2mé?sin?@ me

Again, H is constant in time and equals the total energy. Hamilton's equations are

48 oH _ pg_ do _OH = Py
dt  dpy me? dt dp, mesin’e
2cosH d
dﬂ=_ﬂ=_pgz__ﬂ.:___rnggsine ﬁ_..gy.-
dt 98  mé“sin-0 dt ¢

Note that ¢ is a cyclic coordinate. It does not appear in the Lagrangian, and hence it does
not appear in the Hamiltonian either. The momentum Py conjugate to ¢ is a constant of the
motion. Thus, in integrating the equations for the non-cyclic coordinate 8 and momentum

Pg, we can "ignore" the cyclic variable; the coordinate itself does not appear in the

equations, and its conjugate momentum can be regarded as a constant parameter. For this
reason cyclic coordinates are sometimes called ignorable coordinates.

Rotating pendulum (v¢#4 OF C ﬁtﬁ?ﬂ%ﬁ ?!,’f(\

g
O\ ¢

Fig. 6.05 Rotating pendulum

m

Now consider a pendulum which is constrained to swing in a plane which rotates

about a vertical axis through the point of support at an angular rate w as determined by
some external drive mechanism. Choosing for the (single) generalized coordinate the angle

8, we have the Lagrangian

L= %m@z(é2 +w?sin?0) + mglcosh.
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The momentum conjugate to 0 is again pg = mé2§, and the Hamiltonian is

2
H= —E—Q—z- - lmszlsin2 8 - mgfcosf.
2méc 2
5‘8“:\
In this case the Hamiltonian is not equal to the total energy3/ However, the Hamiltonian is

constant in time, if the drive mechanism keeps the rotation rate w constant. The system
energy is then not constant. It is clear why: the drive mechanism can do work on the
- system. Indeed, this work can be written

oW = Nd¢ = %%dd} -wd],

where N is the torque exerted by the drive mechanism on the system, and J is the angular
momentum of the system about the vertical axis. Energy balance thus gives

(N O LT
E-wd, 5 e Lt 0-mflong
which can be rewritten in the form
d(E - wl) = -Jdo.

The quantity E - wJ, which is like a "free encrgy:" in thermodynamics, is thus constant if
the rotation rate w is held constant. It equals the Hamiltonian H, since the angular

momentum of the syster about the vertical axis is J = mf2wsin®0.
1t is worthwhile to pursue this problem a litle further. The phase space trajectories

are given by H = constant. In particular, the equilibrium points (the points where 0=0
and pg = 0) satisfy

oH . 2
0 = mgfsme[l -(w Z/g)cosﬂ]- 0.

For small rotation rate w these equations have only the solutions (8,pg) = (0,0) and
(=x,0), as for the simple pendulum. Near the equilibrium point (0,0) the Hamiltonian is
given by

H+mgl~ pg +-l—m ﬁ[l—(wzfl )]B2
B omit " 2 5 B

3The sign of the middle term would be plus for energy.
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For small o the coefficient of 87 is positive, and the phase space trajectories near (0,0) are
ellipses around the point; the equilibrium point (0,0) is a stable elliptic point (Fig. 6.06(a)).
As w s increased, the coefficient of 62 decreases, and at w = 4/g/€ (the angular frequency
of a simple pendulum of the same length) it changes from positive to negative. The phase

space trajectories near (0,0) change from ellipses to hyperbolas, and the point (0,0)
changes from a stable elliptic to an unstable hyperbolic equilibrium point (Fig. 6.06(b)).

Py |

@

T8

®

Fig. 6.06. Phase space for rotating pendulum

(@) for w <+/g/€, (b) for w > \g/¢

At the rotation rate w = +/g/¢ the equilibrium point (0,0) splits, and two new

¢équilibrium points at (£8,,0) with cosfgy = g/ {w? come into being. We say that the
equilibrium point (0,0) undergoes bifurcation, These new equilibrium points may be
shown to be stable, The cquilibxium?ﬁm:wﬁ) may be shown to be unstable at all
rotation rates. The locations of the various equilibrium points are shown in Fig. 6.07 as

functions of the rotation rate, with solid lines indicating stable points and dashed lines
indicating unstable points.

we/ g
[}
' i !
H t ]
i 1 i
i ]
1 1 I
L1 1
- -a/2 0 /2 R
g—

Fig. 6.07. Equilibrium points for rotating pendulum

Independent of the rotation rate, the Hamiltonian is invariant under spatial
reflection, 8 — 6 = -8, py — pj = —pg, and for w <4/g/¢ the equilibrium points in
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phase space share this symmetry. However, for w>+/g/¢ this is no longer so. The
equilibrium point (84,0) is not invariant under spatial reflection, but is transformed into
another equilibrium point (-85,0). This is an examp.e of symmetry breaking.

Electromagnetic interaction

The Lagrangian for a particle of mass m and charge e in an electromagnetic field is
L=1imv-ed+(e/c)A v

where ¢ and A are the scalar and vector potentials for the field. The momentum conjugate
toris

p=- ili = mv + (e/c)A
ov

and is the sum of the kinetic momentum mv and the field momentum (e/c)A, as discussed
more fully in Chapter IIl. The Hamiltonian is then

[p-(e/0A] |
2m

ed.

H-p-v-L=im?+ep=

Note that this Hamiltonian can be obtained from the free particle Hamiltonian H = | pl2/2m
by making the replacements H — H—-e¢, p— p - (¢/c)A. This method of introducing the
electromagnetic interaction is used frequently in quantum theory and leads to what is called
minimal electromagnetic interaction. Note that the procedure (though not the above

‘Hamiltonian) is relativistically invariant, (H,cp) and (¢,A) both forming relativistic four-
vectors.
Poisson brackets

The time rate of change of any function u(g,p) of the canonical variables is

f f
Q,Z(ﬁﬂ_&ﬁ_w&) az( du oH du 8H)
dt dq, dt 9p, dt dq, dp, 0p, 9q,

am] a=]

Mathematical structures like the right-hand side occur frequently in Hamiltonian mechanics
and, as we shall see, have interesting properties. It is useful to have a special name and
notation for them. We define the Poisson bracket {u,v] of two functions u(q,p) and

v(q,p) of the canonical variables by
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L du av du av
[u,v] = — —_,
3q, 8pa 0P, 94,

am]

We can then write the above equation in the form

du '
— =[n,H]}.
0 {v,H]

In particular, Hamilton's equations of motion in Poisson bracket notation become

dg, dp,
=24 .q,.H =2 o (p,.H].
" [q,.H] ot {p..H]

Poisson brackets have the following properties:

1. Linearity:
{uy +ug, vl =[uy,v]+[ug,v]
[cu,v] = clu,v] where ¢ is a constant

2. Antisymmetry:
[U,V] = "'[V.,U]

3. Product rule:
[u,vw]=[u,v]w + v[u,w]

4. "Jacobi identity™:
[u,(v,w]+{v,[w,u]]+ [w,[u,v]]= O

Relations 1, 2, and 3 follow readily from the definition of the Poisson bracket. Relation 4,
the Jacobi identity, is less obvious. It can, however, be cstablisheg\in a straightforward
way by expanding the double Poisson brackets and comparing termstd.

Those familiar with quantum mechanics will recognize all the above equations
(except for the original definition of the Poisson bracket) as correct quantum mechanical
equations. All that must be done is to interpret [u,v] not as a classical Poisson bracket, but
as a commutator bracket

[U'V]Poisson - (l/ifi)(uv - vu) = ﬂlih)[u'v]commutalor

of the non-commuting quantum mechanical operators u and v. This forms the basis of the
Dirac-Heisenberg approach to quantum mechanics® and provides a way of transcribing
classical mechanics into quantum mechanics;®when a classical limit exists,

4A more sophisticated (though no shorter) proof can be found in L. D. Landau and E. M. Lifshitz,
Mechanies, (Pergamon Press, Oxford, 1960; 1969; 1976), 3rd ed., trans. J. B. Sykes and J. S. Bell,, p.
136.

Sp. A. M. Dirac, The Principles of Quanium Mechanics, (Oxford University Press, London, 1930; 1935;
1947 1958), 4th ed., sect. 21; also sce the papers by W. Heisenberg; M. Born and P. Jordan; P. A. M.

Dirac; and M. Born, W, Heisenberg and P, Jordan, reprinted in Sources of Quantum Mechanics, (North-
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These general properties, together with the easily obtained fundamental Poisson
brackets

[Qa’qb]'o [Qa’pb]"ﬁab [pavpb]_ov

can often be used to evaluate Poisson brackets without referring back to the original
definition. The advantage of this approach is that it applies to both the classical and

quantum situations. For example, the Poisson bracket of the x-component L, and the y-
component L, of the angular momentum of a particle is

[vaLy]‘[ypZ_zpy'sz—xpz] .
= [ypz'sz]—[ypz,xpz]—[zpy,sz]«i—[zpy,xpz] (Properties 1 and 2)

= 16 terms, the only non - vanishing ones (Property 3)

being y[p,.zlpy + x[z.p,Ipy
= Xpy — ¥Px (Fundamental bracket)
=L,

with two similar relations obtained by cyclic permutation of x,y,z.

The Jacobi identity leads to the interesting theorem: if u(g,p) and v(q,p) are
constants of the motion, then their Poisson bracket [u,v] is also a constant of the motion.
The proof is simple: if uand v are constants of the motion, their Poisson brackets with the
Hamiltonian vanish. The Jacobi identity, '

[u)[V’H]] + [Vr[H: U]l + [H,[U,V]] = 0’

then shows that the Poisson bracket of [u,v] with the Hamiltonian vanishes, so that [u,V]
is a constant of the motion as well. For example, if L, and L, are constants of the
motion, then so is L,. As in this case, the theorem sometimes enables us to find new

constants of the motion. Quite often, however, it simply yields zero or constants of the
motion we already know.

Holland Publishing Co., Amsterdam, 1967; republished by Dover Publications, New York, NY, 1968), ed.
B. L. Van der Waerden.

6 ‘The order of the factors on the right hand side of Relation 3, w after and v before, makes no difference for
Poisson brackets, bul has been chosen so that the relation is also correct for commutator brackets.
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Exercises

1.

A system with one degree of freedom has a Hamiltonian
2

H(g.p) = %1- +A(@p + B(q)
where A and B are certain functions of the coordinate g, and p is the momentum
conjugate to q.
(a) Find the velocity 4.
(b) Find the Lagrangian L{(q.q) (note variables).

We have seen (exercise 5.01) that two Lagrangians L' and L which differ by the
total time derivative dA/dt of some function A(q, 1),

L' =L +dA/dt,
are equivalent, leading o the same Lagrange's ec.uations of motion.
(2) What is the relation between the generalized momenta p’ and p which these two
Lagrangians yield?
(b) What is the relation between the Hamiltonians H' and H which these two
Lagrangians yield?
(c) Show explicitly that Hamilton's equations of motion in the primed quantities are
equivalent to those in the unprimed quantities.

A particle of mass m moves in a central force field with potential V(r). The
Lagrangian in terms of spherical polar coordinates (r,0,9) is

L= %m(fz +126% + r?5in? 0(132) - V{(r).
{a) Find the momenta (p,,pg,p¢) conjugate to (r,6,¢).

(b) Find the Hamiltonian H(r,8,¢, Pr Do Py)-
(c) Write down the explicit Hamilton's equations of motion.

The Lagrangian for a free particle in terms of paraboloidal coordinates (§,m,¢) is
(see exercise 3.09)

L= %m(gz + nz)(gz + nz) + %—m%znzcﬁz.
(2) Find the momenta conjugate to (E,m,$).
(b) Find tiie Hamiltonian,

The Lagrangian for a free particle of mass m, referred to cartesian coordinates
(x',y',2') which are rotating about an inertial z-axis with angular velocity w, is (see
exercise 3.13) :

L= -;-m[()k’2 +yi ey 20(x'y - y'%") + 0 (x'? + y'?)).
(a) Find the momenta (p;,p;,p’z) conjugate to (x',y',z').
(b) Find the Hamiltonian H(x",y",2’,p%, py.p})-

(Ans. H = E:;(pf +pi? + pi2) - wfx'p) - Yy ))
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The equations of motion for a particle of mass m and charge e moving in a uniform
magnetic field B which points in the z-direction can be obtained from g Lagrangian
(see exercise 3.14)
L= %m(:’c2 + yz + iz) +(eB/2c)(xy - yx).

(a) Find the momenta (Px:Perz) conjugate to (x,y,z).
(b) Find the Hamiltonian, expressing your answer first in terms of (x, Y,Z,X,Y.2)
and then in terms of (X,Y,2,p5.py.Py)-
(c) Evaluate the Poisson brackets

(i) [mx,my]

(i) {mx,H]

Consider the one-dimensional motion of a particle in the following potential wells,
in each case sketching representative trajectories in (x, p) phase space:
(a) an infinite square well V(x)=0 for0<x<a
V(x)>> tforx<0 andfor x>a
(b) abouncing ball ~ V(x)=mgx for x>0
V(ix)>o forx=<0

(¢} a simple harmonic oscillator V(x) = %kx2

. 4
(d)adoublewell  V(x)=-Lkx®+ k2
a

In the potential wells of exercise 6.07 the motion is periodic but not necessarily
simple harmonic. The action variable I is defined by

1
1= Et—fpdx

where p is the momentum, and the integration is over a single period of the motion
(see Chapter IX for further details).
(a) Show that the action variable is the area enclosed by the orbit in phase space

divided by 2x and is given by
1 x3(E) ZE=Ve)
I= }?f:(m Zm(E - V(x)) dx,
where E is the total energy, V(x) is the potential energy, and x;(E) and x,(E) are
the lower and upper turning points of the motion.
(b) Show that the period t of the motion is given by

T= 27:2.
dE

() Evaluate the action variable I(E) (see exercise 6.08) for:
(1) an infinite square well V(x)=0 forD<x<a
V(x)—+® forx=0 andfor x>a
(i) abouncing ball  V(x) = mgx for x>0
V(x)— o for x<0
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11.

12,

13.
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(iij) a simple harmonic oscillator V(x) = 1 kx?
and use your results to find the periods of the motions.
(b) In the "old quantum mechanics" of Bohr and Sommerfeld the action variable I
was quantized in units of  (Planck's constant divided by 2m). What does this give
for the energy levels of the systems of part (2)?

(a) Use the definition of the Poisson bracket t: establish Poisson bracket properties
1, 2, 3, and also the Jacobi identity 4.
(b) Show that these four properties also hold for the commutator bracket.

Let f(q(t),p(t)) be some function of the canonical variables, and f its value at
time 0.
(a) Show, if the Hamilionian H is time-independent, that the function f at time t is
given by

£ = £y + t[fo H]+ (t2/2000 €0, HL H + (/3[[fo, HLHL H]+-.
(b) A particle of mass m moving in one dimension x is acted on by a censtant force
F. The Hamiltonian is H = p2 /2m - Fx. Suppose that at time 0 the particle is at
X With momentum pg. Use the result of (a) to find the position x and momentum
p at time t.
(c) A particle of mass m moving in one dimension x is in a simple harmonic
oscillator well. The Hamiltonianis H = p2 /2m + mw2x2/2. Suppose that at time
0 the particle is at x, with momentum pg. Use the tesult of (a) to find the position
x and momentun p at tme t.

The Hamiltonian for a simple harmonic oscillator is

2
H= P + }—mwzxz )
2m 2
Introduce the complex quantites
g = E}.%(xﬁ..i\ a_nd a‘= E_D_/X_-l_p_).
2 mo/ 2 \" mo

(a) Express H in terms of a and a”.
(b) Evaluate the Poisson brackets [a,a"], [a,H], and [a®,H].
(c) Write down and solve the equations of motion for a and a .

(a) Evaluate the set of Poisson brackets for a component of the radius vector
r = (x,y,z) with a component of the angular momentum L= (Lx,Ly,Lz). Also

evaluate those for a component of the linear momentum p = (py,Py,p,) With a

component of the angular momentum. Show that the results can be put in the form
{r,L'n]=nxr [p.L-nl=nxp

where n is an arbitrary constant vector,

(b) Use the results of (a) to show that the Poisson bracket of a component of the

angular momentum with an arbitrary scalar function of r and p, of the form

a(rd, e p,ph), is zero.
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(c) Use the results of (a) 1o show that the Poisson bracket of a component of the
angular momentumn with an arbitrary vector function of r and p, of the form
A=ar+ap+asrxp,
is given by
[A.L'nj=nxA.
(d) Show that the Poisson bracket of the square of the angular momentum

1? - sz + Lzy + th with an arbitrary vector function A of r and p is given by
[A,L2]=2uLxA.

Consider motion of a particle of mass m in an isotropic harmonic oscillator potential
= —é—kr2 and take the orbital plane to be the x-y plane. The Hamiltonian is then

1 1
H=Sg = —(p5 + p2) + —k(x +y*).
2m 2
Introduce the three quantities
1, 5 1 !
Si= 5= Py + Sk - P, S, - —PyPy +kxy, S3=w(xpy - ypy)

with @ = 4/k/m .
(a) Show that
: [Sg.5;1=0 i=123
so (S;,S,,S3) are constants of the motion.
(b) Show that -
[Sl,S'z] = 20.)83 [S2,S3] = 2(081 [S3,S1] - 20382
s0 (2w)71(S,,8,.,83) have the same Poisson bracket relations as the components of
a "three dimensional angular momentum."
{(c) Show that
S - 874+82482

(The corresponding quantum relation has (w)® added to the right-hand side.)

Consider motion of a particle of mass m in a gravitational potential V = —k/r and
take the orbital plane to be the x-y plane. The Hamiltonian is then
1,2 2. k
H=—/(p;+Dp,)-—
2m (P _py ) r
where now = x? + y2 . The angular momentum vector points in the z-direction
and has (z-} component
L =xpy - ypy.
and the Laplace-Runge-Lenz vector (see exercise 1.12) lies in the x-y plane and has
compaonents
K, =p,L -mkx/r, K, =-p,L-mky/r.
(2) Show that
[LaH]=01 [Kx»H]aO' [KyiH]S'O:
so L, K;, and K, are constants of the motion.
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(b) Show that
(KoLl =-K,, [Ky,L1=K,, [K; K, ]=-(2mH)L
(see exercise 6.13 for some useful Poisson brackets). Now restrict yourself to
Kx KY
s ,L| have the
v2mlEl’ v\2mlEl )

same Poisson bracket relations as the components of a "three dimensional angular
momentum."

bound states of energy H = -|E! and show that (

(c) Show that the square of the length of this "three dimensional angular
momentum” is Eﬁ (The corresponding quantum relation is —niz —1—h2 )
206 poncing 4 28 4

Exercises 6-14 and 6-15 can be extended to three dimensions. See, for example, Leonard
L. Schiff, Quantum Mechanics, (McGraw-Hill Book Company, New York, 1968), 3rd
ed., pp. 234-242.



CHAPTER VII
CANONICAL TRANSFORMATIONS

In Lagrangian dynamics we are free to choose generalized coordinates essentially as
we wish. If g is a set of generalized coordinates, then any reversible point transformation

Q=Q(q,t) gives another set. Under such transformations Lagrange's equations of

motion maintain their general form with Lagrangians related by L(Q,Q,t) = L(q,q,t).
Similar freedom also exists in Hamiltonian dynamics. Indeed, since there are twice as
many canonical variables (q,p) as generalized coordinates, the set of possible
transformations is considerably larger. This is one of the advantages of the canonical
formalism. In this chapter we study these canonical transformations in detail. One result,
more fully realized in Chapters VIII and IX, is the possibility of transforming to variables
for which the equations of motion take on a simple form, thereby making possible the
solution to the dynamical problem.

One degree of freedom

There are many approaches to canonical transformations. Before studying them in
all their generality, it is worthwhile to get an overview by restricting ourselves to systems

with one degree of freedom and to transformations which do not involve the time explicitly.
That is, we consider a transformation from old variables (q,p) to new variables (Q,P), of
the form

Q= Q(q,p) P = P(q,p),

and ask what restrictions we must impose in order that :his be a cinonical transformation,
that the new variables form a canonical set if the old ones do. The new variables must
satisfy dynamical equations of canonical form, Hamilton's equaiions, 0 we begin by

| | o | |

looking at the timé ratés of change of Q and P

aQ ¢H dH w2
9Q_rqu) QM _QH  uis
dt P 9q dp ap aq
dpP dPéH 0P gH
Salpn], -2 _EH
dt dq ap dp dq

The partial derivatives of the Hamiltonian can be rewritten
oM _oHoQ  dap
dg dQdq P dq
6H _oHoQ oH oP
dp 9Qdp dP adp
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where H(Q,P) = H(q(Q,P),p(Q,P)) 13 the original Hamiltonian expressed in terms of the
new variables. Substituting these expressions into the above equations gives

dQ oH/aQoP oQoP\ oH
__Q_.. __(__Q_.___Q___) ““‘—[Q’P]q,p

dt oP\dq dp dpag) 9P
SEE_QE(EQ_?E_E’Q?E) _,‘?)_E[Q p]q
dt  9Q\ag dp op oq Q- 4P

where [Q, P]q‘p is the Poisson bracket of the new variables with respect to the old. The
new variables thus satisfy Hamilton's canonical equations of motion independent of th
form of the Hamilionian if, and only if, [Q,P]y p =k where k is any non-zero constant:

Usually we are not interested in tiie changes in scale associated with k = 1, and carrying
along an arbitrary constant is a nuisance. We thus take k =1, defining a canonical
transformation in one degree of freedom as a transformation (q,p) — (Q,P) for which

[QP] =1

The canonical equations of motion are then covariant under canonical transformations
together with appropriate scale transformations.
Another way to approach cunonical transformations is to observe that

PR —

Y
F
St
Qe _aQap
Jdg dp dp dq
is the condition for the differential form

e oL s

pdg - PdQ = (p— PQQ) dq—Pigdp
dq p

IThe "if* is trivial. To sce the “only if," note that for the right hand sides to have the form
9K/aP, - aK/aQ (i.. in order for a new Hamiltonian K(Q,P) to exist), the cross-derivatives must be
equal,

9 (oH ¢ (oH

— | —{Q.P =—| —[Q.P .

aQ( ' ]‘“’) aP(aQ[Q 1“"’)

GH QP JH AQP),
#  aQ QP
We want this to be true independent of the form of H and hence require
AQPL,  dQPlL,
3Q ap
so [Q,P, , must be independent of Q and P; thatis, it is a constant.

Expanding this gives

=0,
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tF be an exact differeptial.. Recall that the usual statement of the condition is that the cross-
eriva

eequal
Ho-e)-2e3)
ap dg) 9q ap

which is another way of writing the Poisson bracket condition. We can thus set
pdq -PdQ = dF

where F is a so-called generating function of the transformation. The reason for this
name is as follows. Suppose that F is a function of the mixed set of variables (g,Q). The
right-hand side of the preceding equation then becomes

gF  OF
dF = —dq+--dQ,
aq 3Q

and we have

_F@Q o F@Q)
P dq aQ

The first of these can be inverted to give Q(q,p) (provided 3*F/aqaQ = 0), and the
second then gives P(q,p). So in this sense F "generates the transformation.”
As a specific example consider the transformation

q=1f—%isinQ p=V2mwP cosQ,
mw

where it is more convenient to give the old variables (q,p) in terms of the new variables

(Q,P). The constant mw is arbitrary but this notation turns out to be useful for what
follows. We evaluate the Poisson bracket

9q ép dq dp
qp]QP dQ aP 4P dQ

1/ costjf—— cosQ - stxxIZ P(-sinQ)

Thus the transformation (from new to old and hence also from old to new) is canonical.
That this is so can also be seen by finding a generating function. Let us choose g and Q as
independent variables, setting
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P- %mmcf csc?Q p = mwgcotQ.
The differential form becomes
pdg - PdQ = mwqcotQdq - %mqu cse?QdQ = d(%quzcotQ).
It is an exact differential, so the transformation is canonical with generating function

F(q,Q) = +mwq’ cotQ.

The inverse ransformation has the form

2
Q=cot™! P Pcl(i—+-l—mm2q2]
maq wi2m 2

and suggests the following application. Suppose that (q,p) are the usual canonical

variables for a simple harmonic oscillator of mass m and angular frequency w. The
Hamiltonian is
2
Halo s —mu)zqz.
2Zm 2

In terms of the new variables (Q,P), the Hamiltonian becomes
H=0wP.

The new Hamiltonian H does not contain the new coordinate Q; the new coordinate is a
cyclic coordinate. Hamilton's equations for the new variables are

oH P gH
= ——— = (1) ——— R —
ap

9Q
d dt 0Q
and can be integrated immediately to give

Q=wt+f P=a

where o and B are constants of integration. The equations of the canonical transformation
then give the solution to the equations of motion for the original variables,

q= 1,2& sin(wt + ) p = v2mwa cos(wt + B).
mw
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The new momentum P is an example of a canonical variable called the action variable.
The coordinaté Q conjugate to it is called the angle variable, and the above is a
transformation to action-angle variables. This very useful transformation is discussed
in detail in Chapter IX.

Generating functions (f}ﬁ]\@ﬁw\‘ﬁll,)

We now turn to the general theory of canonical transformations. Consider a
‘mechanical system with f degrees of freedom, which is described by a set of 2f canonical

 variables (q,, P.)- These variables satisfy Hamilton's canonical equations of motion

do, (oH  dp, _4H

dt  dp, dt 9q,

with Hamiltonian H(g,p,t). Suppose we introduce a new set of variables (Q,,P,) via the
transformation

Q. = Q.@q.p.1) P, = P.(q.p.0).

We want the new variables, at the very least, to satisfy dynamical equations of canonical
form L

dQ, 8K dp, 0K
dt 4P, dt  4Q,

where K, the new Hamiltonian, is some function of Q, P, and t; that is, we want the new
variables to be canonical variables. What are the restrictions on the transformation in order
that this be so? Discovering these is made easier by the observation that Hamilton's
equations can be regarded as Lagrange's equations for a system with 2f independent

"generalized coordinates” (g,,p,) and "Lagrangian”

f
L= ¥ poda - H@,p.0).

a=]

We have

dt\dq,) oq, dt | ag,
0- (8] 8k o[- 21
di\dp,) dp, dap,
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which are indeed Hamilton's equations. We can thus takg over into Hamiltonian mechanics
what we have already learned in Lagrangian mechanics¥and, in particular, what we have
learned about transformation of coordinates. We saw that in Lagrangian mechanics we
could use essentially any set of generalized coordinates to describe a system; Lagrange's
equations take the same general form no matter what set we use. Does this mean that there
are no restrictions on canonical ransformations? No, because Hamilton's equations arise
from a Lagrangian with a very special form; if we make an arbitrary transformation of the
canonical variables, the resulung Lagrangian

(Q,P,Q,P,t) = L(g,p.q. P, 1)

does not usually have the required form. In order to yield equations of canonical form, the
new Lagrangian L must be equivalent to

f
3 P,Q - K(QP.D).

a=l

This does not mean that L must have exactly this form; L may differ from this by the total
time derivative dF/dt of some function F and still give the correct equations of motion. It
is also possible to allow the two Lagrangians to differ by a constant factor. As pointed out
earlier, however, such a factor is a nuisance to carry along, so we simply define a
canonical transformation as a transformation (q,p) — (Q,P) for which

——— R pamit et T i pean®: Pk

SRR SRR P i TR Sucman [y eI

1.
S pads - H
el

A T S e’ b AR

g

This can be written

f f
Epadqu - Hdt= ZPaan - Kdt+dF,

a=1 am=]

which says that a canonical transformatio
f
(extended) canonical one-form Epadqa—Hdt up to a total differential. The
W ———————__ o Nt
a=l
function F is called the generating function of the _transformation. Hamilton's
eqliations are covariant under canonical transformations and dso Unider more general
transformations which include a change of scale.

for.:nation which preserves the

230, for example, Hamilton's equations can be obtained from a variational principle

forr
5J [EpaQa'H(q’p,[)]dl=0

a=]
°

in which the 4 and p are regarded as a set of 21 independent variables, and the comparison paths are all those
neighboring paths in (extended) phase spuce widh the same end points as the path of interest.
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The 4f variables (q,p) and (Q,P) are connected by the 2f equations of
transformation. “Thus, 2f of them are independent variables and the remaining 2f are
dependent. Which 2f variables are independent and which are dependent depends partly on
the particular transformation we are considering and partly on which variables we choose to
regard as independent. For example, for the identity transformation Q=q,P=p we
cannot take (q,Q) or (p,P) as the independent variables, but (g,p), or (Q,P), or (q,P),
or (p,Q) are all possible choices. The natural choices, always possible, would seem to be
either the old variables (q,p) or the new variables (Q,P), and we eventually discuss this
possibility. For our purposes here, however, a mixed set of variables, half old and half
new, turns gut to be more convenient.

Let us first suppose that the transformation is such that we can regard the old
coordinates g the.new coordinates Q as independent. Such canonical transformations
are often calleditype 1, For these the generating function F, is a function of q, Q, and t,

$0 we can set in the preceding equation

£/, .
JF JF oF,
dF,(q,Q,t) = (—qu +—1d0 ) +—Ldt.
: 821 aq, © aQ, ) at
The coefficients of each of the dq,, dQ,, and dt on the two sides of the equation must be
equal. This gives

- aFI(QsQ’t) P =__aFl(q;Q,[) K=H+&_
aqa ! aQa at

a

The first set of f equations can be inverted (provided detl9*F,/aq,8Q, I 0) to give the
new coordinates Q in terms of the old coordinates q and momenta p; substituting this result
into the second set of f equations then gives the new momenta P in terms of q and p;
finally, the third equation gives the new Hamiltonian. Thus, F, "generates the
transformation.” '

For the particular transformation we are considering, it may not be possible to
regard (q,Q) as independent. For this or for other reasons (such as personal preference)
we next consider transformations for which we can regard the old coordinates q
new momenta P as independent. Such canonical transformations are often called Exn pe ZE
It is convenient to rewrite the left-hand side of the cquation which defines a candnIe3
transformation by setting

f P, dQ d/ f P.Q ) f
at\da T axa| = (Qadpa'
A Ve
We then have Fl :Fl( %_"P.T)

f f
> padg, + > Q,dP, + (K - Hydt = dF,

am] a=]
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where

f
Fy=F + 3 PQ

am]

is the generating function of the type 2 transformation. Note that it is not obtained simply
by changing variables in the type 1 generating function. If we take F, to be a function of
the appropriate independent variables (q,P,t), we have

£
oF dF oF
dF,(q,P,1) = 2dq, + —2dP, | + —2dt.
2q ) EE.I( aqa qa apa a ot
Coumparing with the above, we then obtain the equations of the type 2 canonical
transformation
. F,(q,P, F
aSan(q,Pt) Qa=a »{(q.P,1) K=H+g—2.
0q, 0P, at
‘The first set of f equations can be inverted (provided detlaze/aqaan [# 0) to give the
new momenta P in terms of the old coordinates g and momenta p; the second set of f
equations then gives the new coordinates Q in terms of q and p; and the third equation gives
the new Hamiltonian.
It is clear that we could continue by considering transformations for which (p,Q)

are independent or for which (p,P) are independent, or by considering more generally
transformations which are of mixed type, perhaps type 1 for certain degrees of freedom and
type 2 for other degrees of freedom. However, the general features are now clear, and it is
more important to consider whether every canonical transformation is obtainable from a
generating function of some type. The answer is yes. This is assured by the fact that itis
always possible to choose some set of f variables from the set of 2f new coordinates and
momenta (Q,P) so that, together with the f old coordinates g, we obtain 2f independent

variables:3?

3C. Carathéodory, Calculus of Variations and Partial Differential Equations of the First Order, Part I:
Partial Differential Equations of the First Order, (Holdea-Day, San Francisco, 1965), trans. Robert B. Dean
and Julius J. Brandstatier, p. 92; V.1. Armol'd, Mathemaiical Methods of Classical Mechanics, (Springer-
Verlag New York, Inc. 1978), trans. K. Vogunann and A. Weinstein, section 48.



Identity and point transformations 123

Identity and point transformations

We have already noted that the identity transformation is a canonical transformation,
and that a type 1 generating function does not work. What then is a suitable generating
function? It is easy to see that the type 2 generating function

f
Fidemity = EQaPa

a=]

does the job. Suppose now that we replace the old coordinates q, in Figenry by a set of
independent functions f,(q,t) of the old coordinates, obtaining

f
F(q:Pr[) = Efa(qvt)Pa'

aml

What transformation does this generate? We readily calculate

oF F & of
=f.(q,1) Pa= = .
apa ach bl aqb

Qa' Pb'

This is a point transformation, in which the new coordinates are determined solely by
the old coordinates (with time as a parameter), and is the type of transformation
encountered in Lagrangian mechanics. It is now supplemented by an associated (linear)
transformation of the momentum.

As specific examples, let us consider again the space-time transformations, as
applied to a single particle of mass m.

(a) A spatial displacement,

, dF
r'=—=r+a,

op
is generated by F(r,p') = (r+a)-p’. The associated transformation of the momentum is

E
Parp,

that is, the momentum is the same in the two frames.
(b) A spatial rotation about the z-axis through an angle 6,

X' = —— = xcosB - ysin®, y’=a—1~7=xsin8+ycosﬁ, z'--a—fj-z,
. Oy Pz

is generated by
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F = (xcos8 - ysin®)p; + (xsin® +ycos0)py, +zp,.

The associated transformation of the momentum is

OF _ 1 cos6 s o' sin 0F _ 18+ 0! cosd 9F
Px = = Pxc0s8 + pysinb, py=~é;=—pxsm *+pycosd,  p; =——=p,.

These cau be inverted to give
Px = Pxc0s8-pysin8, py =p,sin6+pycosd, p;=p;.

The components of the momentum transform in the same way as the coordinates; that is,
momentum is a vector.
(c) A Galilean transformation

can be generated by
F(r,p’,t) = (r+vt)-p'.

The associated transformation of the momentum is

p ¢F p’
o
so with the above generating function the momentum in the two frames is the same. This is
not what we would expect for a Galilean transformation. Rather, since particles have an
additional velocity v in the prime frame, we would expect a particle of mass m to have an
additional momentum myv, $o that

p' =p+mv.

We can uchieve this, without affecting the coordinate transformation, by modifying the
generating function, adding to the original a suitable function of r and t. In particular, if we
take

E(r,p',t) = (r+vt) p' —mv-r+£(t)

where f(t) is any function of time, then both the transformation of the coordinate r and the
transformation of the momentum p are as expected. There is now, however, a feature
which distinguishes this transformation from the other space-time transformations: the
generating function depends not only on the frames, but also (because of the parameter m)
on the system being considered.
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Infinitesimal canonical transformations
We have seen that the identity transformation is a canonical transformation,

f
generated by the type 2 generating function Figepyy = anPa. We now consider
aml
transformations "near” the identity. These are generated by functions "near” Figengry. We
set

f
F(q,P,t) = zana +¢G(g,P,t)

a=l

where G is any function, and the infinitesimal ¢ serves to remind us that the change is

"small," so that terms of order ¢? and higher can be dropped. F generates the
transformation

dF . aG(q,P,t) - oF -P, +¢ aG(q,P,t).

- = €
& op, 1 dP, TR dq,

~ince the term involving G is already first order in ¢, we can replace the new momentum P

in G by the old momentum p, the difference affecting only terms of order €2 and higher.
This gives the infinitesimal canonical transformation in explicit form

aG(q,p,t) 3G(q,p.t)
Qa=qa+e__9-—?——- Pa‘pa_.s_.____q—.p_—.
9P, 09,
We refer to G as the generator of the infinitesimal canonical transformation. Thus, for
example, the generator for an infinitesimal spatial displacement da is p-da where p is the
linear momentum; that for an infinitesimal rotation 88 about the z-axis is
(xpy - ypx )30 = L, 86 where L, is the z-component of the angular momentum; and that
for a Galilean transformation dv is (pt-mr)-dv. These can be obtained from the
generating functions for the finite transformations by replacing the parameters with

infinitesimals and retaining only zeroth and first order terms.
An especially important case is the following. Let G be the Hamiltonian H, and let

¢ be dt, an infinitesimal increase in time. For this choice the new variables are

oH d
Qult) = Qo (1) + dt = qq (1) + it dt = g (¢ + dt)
op dt

2

P, (1) = p, (1) - ot = pa(t)+9ap-t‘-"-dt = p,(t+dD) .

0q,
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From the active point of view, this represents a displacement of points in phase space. The

displacement is that which occurs as the system develops in time from tto t+ dt. Put
another way, we can view the infinitesimal time development as the result of an
infinitesimal canonical transformation, Since the finite time development from tg to tcan
be built up from a succession of infinitesimal developments, each of which can be
described by an infinitesimal canonical transformation, and since a succession of canonical
transformations is again a canonical transformation (canonical transformations form a

group), the finite time development from to to t can be viewed as the result of a finite
canonical transformation. The variables at time t are related to the initial variables at ime tg

by a canonical transformation. Finding this canonical transformation (that is, its generating
function) amounts to solving the dynamical problem. We return to this idea in Chapter
VIIIL.

Invariance transformations

In a canonical transformation (q,p) — (Q,P) the canonical equations retain their
general form (that is, are covariant), the old set

dg, oH dp,  ¢H
dt  dp, dt dq,
going over to the new set
dQ, 9K dp, 9K
de 4P, dt aQ,

with new Hamiltonian given by

9F
K(Q.P.) = Hig,p.0 + ==

where F is the generating function of the transformation. Since K is usually a different
function of the new variables (Q,P) than H is of the old variables (q.p), the explicit form
of the right-hand side of the canonical equations is usually different for the new and old
variables. However, if K happens to be the same function of the new variables as H was
of the old variables, that is if

K(Q’ pl t) = H(Q’P’t):

the explicit form of the canonical equations is the same for the old and new variables. We
then say that the system is invariant under the transformation, and that the transformation
i, an invariance transformation. Putting the above two relations together, we have the
condition for invariance ‘
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H(Q.P,t} =H(q,p,0) + %l—:i

An important case is the infinitesimal invariance transformation. If we set

0G(q,p,1) 0G(q.p,1)
Q, =q, +e———— P,=p, —e—>"
a a apa a aqa

where €G is the generator of the infinitesimal canonical transformation, we have the
¢ondition

G G 0G
H(q + e~—,p-e¢—,t) = H{q,p.t —_—
(qsappbaq) @p.O+e=

If we expand and regroup this equation, we can write the condition for invariance in the
form

The generator of the infinitesimal invariance transformation is thus a constant of the
motion, and we can expand on the Chapter V result, now saying:

Associated with
any infinitesimal invariance transformation
is
a constant of the motion,
which is the generator of the transformation.

For example, the free particle system with Hamiltonian

is obviously invariant under spatial displacement and spatial rotation; the associated
constants of the motion are proportional to the linear and angular momenta. Less
obviously, it is also invariant under Galilean transformation. The new Hamiltonian is
given by

K = H + dF/at

where F(r,p',t) =(r+vt)-p’'—mv-r +f(t) is the generating function of the Galilean
transformation. We thus find

' 2 "2
_ Ip’ - mvl Fvep+ df(t) _ p’l Imv2+df(t).

— s —

K
2m dt 2m 2 dt
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"2

So if we-take f(t) = — L mv?t, the new Hamiltonian is K = P and we have invariance.
- Zm
Actually, since the last two terms in K are independent of the canonical variables, being at
most a function of time, their presence or absence does not affect the role of K as
Hamiltonian; the dynamical equations aie the same either way. It is, however, neater to
eliminate them as we have done. The full generating functic .. of a Galilean transformation
is then

F(r,p,t)=(+vt):p'-mv-r- %mvzt.

The generator for the infinitesimal Galilean transformation is (pt - mr)-dv. It is a constant
of the motion for the free particle system. The term in brackets can be identified as -mr
where ry is the initial position of the particle.

Lagrange and Poisson brackets

In our discussion to this point, canonical transformations have been intimately
connected with dynamics, with the time development of a system. Indeed, they were
inweduced as those transformations (with certain non-scale-changing requirements) which
preserve the form of the dynamical equations, that is under which Hamilton's canonical
equations are covariant. This view is somewhat misleading. While the connection of
canonical transformations to dynamics is important, we should take a broader perspective,
viewing canonical transformations simply as a class of transformation on phase space
without reference to dynamics. After all, we have already noted that any particular
canonical transformation leaves the form of the canonical equations unaffected, independent
of the form of the Hamiltonian; a canonical transformation is not tied to any specific
dynamical system. Canonical wansformations may still, of course, be "time dependent,”
but the "time" in the wansformation is to be regarded simply as a continuous parameter on
which the form of the transformation depends. We note that the definition of a canonical
transformation really contains two ideas.OIn the first place, there is the equation arising

from the variation of the canonical variables, "¢ovariance of the canonical one-form
f s e e AT O TES g o B L e ag| - Sl BT TR R e g o Ly e R

2 p8q. up to a towal differential,” thus

cm]

f
> (pedqc - PBQ,) = 8F.

c=]

Here the time t, if it appears in the tansformation equations, is assumed to be held fixed;

hence the "8" rather than "d."%In the second place, there is the equation arising from the
variation of the time, the canonical variables Being held fixed: . This gives the new
Hamiltonian K-~ Formow we-consider only thé above equation, returning in the next
section to the dynamical aspects and, in particular, to the existence of a hew Hamiltonian.
If we take F as a function of one of the mixed sets of 2f variables, (q,Q) or (q,P)
for example, we recover the generating function description of canonical transformations.
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Let us now see what happens if we take F as a function of a more natural set of 2f

independent variables, the new canonical variables (Q,P). We write the left-hand side of
the preceding equation as

S8 -vhn {39

P
awl)\c=l apa)

The necessary and sufficient conditions for this to be an exact differential are that the cross-
derivatives be equal,

f
aQb szc aQa Pa

Cml

f .
(aqc Ipe _ 9pe dqc) -0
[\ 6P, 0P, 4P, 0P,

The sums on the left-hand sides all have similar structure and can be expressed in terms of
a new kind of quantity called a Lagrange bracket. We suppose that the canonical variables

(q,p) are functions of two variables, say u and v. The Lagrange bracket of u and v
with respect to (q,p) is then defined as

f
- /99 9Pc _ 9p¢ 99c)
{U'V}q'p z\ Ju dv  du 6v/-‘

The necessary and sufficient conditions for a transformation (q,p) — (Q,P) to be canonical
can now be expressed in terms of Lagrange brackets, thus

{Qa’Qb}q,p =0 {Qa'Pb}q,p = 6ab {Pa'Pb}q.p =
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The u and v are here the new canonical variables (Q,P) taken a pair at a time.
i Lagrange brackets look like reciprocals of Poisson brackets; the derivatives are, as
it were, "upside-down.” Recall that for a Poisson bracket we suppose that we have two

functions, say u and v, of the canonical variables (g,p). The Poisson bracket of u and
v with respect to (q,p) is defined as

[u] -é(ﬂﬂ_iu_ﬁr_)
op d=1 an apd apd an

To see the connection between Lagrange brackets and Poisson brackets, let uy(q,p,t),
where k =1,2,---,2f, be any set of 2f independent functions of the 2f canonical variables
(q.p), and possibly also of the time t as a parameter. These can be inverted to express the
canonical variables as functions of the u's. If we imagine the canonical variables as
functions of any two of the u's, say u, and u;, we can form a Lagrange bracket

{ug,u;}q,p» and if we imagine any two of the u's, say uy and uj, as functions of the
canonical variables, we can form a Poisson bracket [uy,u;], . Now consider

2t 2f £ f . o
E{uk,ua}[uk,uj]-zzz(aqc 9p; _ 9pc iq_c)(auk du;  duy J).
k! L& L\ ou du; duy 09 )\ g Ips IPg 3

On expanding this, we encounter

26 2 2f 2f
E.@S&Q‘B_-ﬁ Efﬂc_ﬁm_k,.(), Eﬁp_cg‘il;,o, and §3Pe i _ 5
|

od? : - d-
& 0uy dq4 &\ 0ug'dpy duy dqq Lou dpg

2f ff £
‘ dp. du;: gq. Ou: dp. 0u;  gg. Ou;
S vl =Y 2(3&4 . ~q—°—-l-)6cd . 2(_%_—1 . _9.2.4) -5,
k=1 L&\ du; dpg dy; 9qy &\ du; dpe  du; 0qc

which expresses quantitatively the reciprocal nature of the brackets. In particular, if we
arrange the sets of Lagrange and Poisson brackets in matrix form,

{upu ) (v} oo || Dupu] [ugug]

1 0
{u,up} {uz,u;} (ug,u;] [uz,u3l =[0 1

we sec that the transpose of the matrix of the Lagrange brackets and the matrix. of the

Poisson brackets arc InVeIses of ofie dniother. Now suppose that the u's are related to the
(¢ P By a canonical transforfiiation;, thit they form a set of new canonical variables with

u, =Q, U, r=P, where a =1,2,---,f.
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We then know the Lagrange brackets and can use the above relation to find the Poisson
brackets

[Qanb}q.p =0 [Qa'Pb]q,p = 6ab [Pavpb]q.l! ~0.

These are the necessary and sufficient conditions for a transformation to be canonical, now

expressed in terms of Po1sson rackets. cy form a conveniént way to test whether or not

a given transformation (g, p) = (Q,P) is canonical.
We notice that since the Poisson brackets of the new variables (Q,P) with respect
to the new variables are obviously given by

[Qa,Qplgp =0 [Qa:Polg,p =8 [Pa,Polqp =0,

the fundamental Poisson brackets of the new variables are the same whether we use the old
variables or the new variables to evaluate them; they are invariant under canonical
transformations. We now show that this applies to all Poisson brackets. Consider two

arbitrary functions u(g,p,t) and v(g,p.t) of the canonical variables (q,p) and possibly
also of the time t, and form their Poisson bracket {u,v],,. We wish to see how the

Poisson bracket transforms if we transform to new cancnical variables (Q,P). To help
keep the variables straight, introduce u(Q,P,)= 1(q(Q,P,1),p(Q,P,1),t) and

v(Q,P,t) = v(g(Q,P,t),p(Q,P,1),1), so T and u have the same value at a given point in
phase space, viewing the transformation passively, but their functional forms are different.
Using the chain rule for partial derivatives, we have

f .
du gv  du dv
(0., - (f— - )
P aE, iq, dp, dp, dq,
*éié ( oT_9Qy | 0T an)( v Q. Y apc)_( 4+ P, )
L& i\ 0Q, dq, 9P, 09, /\0Q, dp, 0P dp,/ \interchange

Expanding this and collecting similar terms, we find that the Poisson bracket can be written

f f — — — _
0 dv ou ov
(s ¥lap = bz.lcz.l( 70, 90, (2 Qelap * 56 5p Qo Pelas

Ju ov ou dv,

= 2 py, o
9P, an[ o Qeli P, 9P,

[Pb,Pc]q_p) )

Now use the Poisson bracket conditions, and find

f _ — — -

du ov du ov

lu,vlg p = ( - )-[E,V] P
a.p bE, 39Q, oP, Py 0Q, Q
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We have thus shown that an arbitrary Poisson bracket is invariang under canonical
transformations; if can be.¢yaluated using any set of canonical variables. This is yet
another way to state the conditions that a transforfattor B tAnomear-"" =

Time dependence

Now turn to the time dependence of the variables. If we imagine the new canonical
variables as functions of the old, then

4Q, [ 9Qa) dP, R
-[QaiH]q‘p"" 2 4 S[PB’H-}q.p + a .
dt \ at }q.p t \ ot /q.p
Since the Poisson bracket is invariant, we can set
T oH — oH
[Qa.Hlgp =[Qa.Hlgp = 3P, [Pa.Hlgp =[Py, Hlgp = - 9Q,

Thus, if the canonical transformation does not depend explicitly on the time, the new

variables satisfy the canonical equations of motion with Hamiltonian H. What if the
transformation does depend explicitly on the time? We must then consider what to do with
the partial time derivatives of Q and P. To find these, we return to the definition of a
canonical transformation,

f
2(p36Qa - PaaQa) =90F,

awm]

and differentiate with respect to t, holding (q, p) fixed. The result is

P\ a0 _paldQ) | sl OF)
J oo P /q_,,] o)

4.p

This can be written

f
_(9Pa) L9 -3
321 \ a /q'pﬁQ“ \ at }q‘pépa 0

where

If we take G as a function of the set of 2f independent variables (Q,P), we have
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3G 3G
8G = 3| =8Q, + ~—P
3 n)

Equatmg the coefficients of the 5Q's and the dP's on the two sides of the above equation
then gives the required partial time derivatives of the Q's and P's,
q < ﬂi H] 1‘&
(3 _9G () 96 »

Vac /g, op,  Lat)o,  aQ, '\ f@c\ H+&l
{ Po , WY er]} 1
If these expressions are now inserted into the equations at the bcgmmng of this section, we
see that in general the new variables (Q,P) satisfy canonical equations of motion with new
Hamiltonian H + G.
Note that the "t" in the above equations does not have to be the "time," but could be

any parameter on which the transformation Q = Q(q,p,t), P = P(q,p,t) depends. These
are, in fact, the equations of an arbitrary infinitesimal canonical transformation with

generator Gdt.
The function G is simply related to the generating function of the canonical

transformation. For a type | generating function, F = F(q,Q,t), and

0P\, wfFF) () _[F)  _gp (3Q)
) ‘)q"\ 3, \a‘ 2P

where we have made use of the canonical transformation equation P = - dF;/8Q. So we
have

_{8F))
\a}

f
For a type 2 generating function, F = F,(q,P,1) - ZQaPa , and

am]

(9Fy () S
\at) \ ot /) p dz.l
{

(Y p ()
‘\atzjq_p EP

am}

where we have made use of the canonical transformation equation Q = 9F,/dP. So we
have ‘
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AN
\ ot }q_p
In either case G is the partial time derivative of the generating function with the appropriate

set of mixed variables held fixed. This then returns us to our earlier expressions for the
Hamiltonian K for the new variables, namely

oF
K=H+—%,
at

Integral invariants

We have seen that a transformation from variables (q,p) to variables (Q,P) is
canonical if it preserves the canonical one-form pdq up to a total differential, thus?)

pdq ~ POQ = 6F.

We assume that the old and new momenta are single-valued "functions” of the state of the
system (but the old and new coordinates need not be). The function F is then also single-
valued, so if we integrate along any curve in phase space which starts at a given state and
returns to the same state, the right-hand side gives zero and we have s \

O LR TT 2 o

fpéq:fPéQ_ 7\\1;({

We see that this integral, called the circulation, is_invariant upder canonical
tragsformatigns. It should be emphasized that the curves we are here considering have
nothing to do with dynamical trajectories; they are arbitrary "closed” curves in phase space.
Indeed, dynamics (time) has yet to enter the picture.

We can express the invariance of circulation differently by making use of Stokes'
theorem. This says

$pdq = [[(6,98,p ~5,93,p).

The integral on the left is around a simple closed curve in phase space, whereas that on the
right is over a simply-connected two-dimensional surface which has the curve as its edge.
Basically, Stokes' theorem states the equivalence of two ways of evaluating the area in the
q-p plane enclosed by the curve (Fig. 7.01). On the left-hand side we add up the areas
pdq of little rectangles of height p and width dq, whereas on the right-hand side we add
up the areas 8,qd,p - 9.qd,p of little parallelograms with adjacent sides (3,q,8,p) and

(3,9,8,p).

4In this section we use an abbreviated notation, suppressing the summation index and the sumunation sign.

f
Thus pdq stands for Epa dq,.

a=1
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8,98,p -3,90,p
(829,52p

\/ q
(@) (b
Fig. 7.01. Area in phase plane: (a) as rectangles; (b) as parallelograms
In particular, the circulation around one of these infinitesimal parallelograms is (Fig. 7.02)
§pbda = (pdq)a + (pdq)y + (p8Q)e + (PBQ)4

= 8,(pd,q) - 8,(pd,9)
=0,q09,p-9,98p .

The second equality follows from grouping the first term with the third term and the second
term with the fourth term in the preceding line; the third equality then follows from

8,9, = 6;8,9.

(8,9.5,p)

(5,9,5;p)

Fig. 7.02 Circulation around infinitesimal parallelogram

The last expression 8,q6,p - 8,q0;p is called the canonical two-form. It is determined
by two infinitesimal displacements in phase space and may be thought of as a little patch of

area.s’ Since the circulation is invariant under canonical transformations, the canonical two-
form is also invariant, :
D e e A e

0,g6,p - 8,98,p = 6,Q8,P - 6,Q0,P;

atter which set of canonical variables we use in evaluatin
form. This is yet anothér way t0 characterize a canonical transformation. The result is

—

f
5More fully, the canonical two-form is 2(6,q, 9,p, — 9,9, 6,p,) and is the sum of the areas (with
a=l

appropriate + or - sign) of the projections of the parallelogram onto the various degrees of freedom.
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sufficiently important that it is worthwhile to give an alternaie and perhaps simpler
derivation which avoids integration. We start with the definition of a canonical
transformation,

pdiq-Pd,Q = OF
with displacement 1, and subject it to a displacement 2. The change is
d3,(pd,q) - 8,(P4;Q) = 00/F.

We now interchange the displacements 1 and 2 and subtract the two results. Since
8,0,F = 8,8,F, the right-hand side gives zero and the left-hand side can be rearranged to
give .

8,(pdyq) - 6L(P62Q) =0,(P5,Q) - 6,(P3,Q).

On expanding this result, we recover invariance of the canonical two-form.
A convenient way to describe the surface over which the above integration is
performed is to label points on it by two parameters, u and v, in terms of which the

canonical variables can be written q =q(u,v) and p=p(u,v). A typical infinitesimal
parallelogram is then the area enclosed by the curves u constant, u+ du constant, v
constant, and v+dv constant (Fig. 7.03), and we can take 9, = du(d/ou) and
8, = dv(afov).

v +0v

Fig. 7.03. Parametrizing the surface

The integral over the surface becomes

DL
”\au ov avaujﬁuav ff{U‘V}q'pﬁuﬁv

where {u,v}, , is the Lagrange bracket of u and v with respect to the canonical variables q
and p. We see that invariance of the canonical two-form under canonical transformations is
anather way of stating the invariance of the Lagrange brackets, ]

{u,v}q'p = {u,v}Q_p.
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L%t us now turn to dynamics, to the way things change with time. It is convenient
to think of this as inducing an active transformation on phase space. Then, in the time
interval tto t + dt, a point (q,p) moves to (q + dq,p + dp), where

dg-B@pD, g dHGRY
ap og

A neighboring point (g + dq, p + dp) moves similarly

d(g +8q) = dH(q + 3q,p + dp, t) dt d(p + 8p) = - dH(q + bq,p +6p’t)dt.
So, expanding the right-hand side of the above with the aid of Taylor's theorem and

subtracting (dq,dp), we obtain the change in the little displacement (8q,dp) in the time
interval tto t + dt,

a*H 9*H 3*H #*H
daq,(—__aq+-7~v~6p)dt dép--(———-bq+———5p)dt-
dqdp opop 9qdq dpdq

From these basic relations we can find the changes in other quantities. In particular, the
change in the canonical two-form in the time interval tto t + dt is given by

d(8;98,p - 8,q8,p) = (d8,q)8;p + 8;q(dd;p) - (1 « 2).

Substituting for ddq and for ddp, we find that all terms on the right cancel independent of
the form of the Hamiltonian, so the change in the canonicat two;fgrm is zero. Hamiltonian
dynamics is such that the canonical two-form is constant in time'8.#

0,48,p - §,q6;p = constant.

If we think of the canonical two-form as a little patch of area in phase space, then as time
goes on the patch moves and distorts, but its area remains the same. More generally, if we
consider a two-dimensional surface in phase space, as time goes on this surface moves and

distorts, but its area f f (8;90,p ~ 8,q98,p) remains the same. By Stokes' theorem this

surface integral is equal 10 the circulation f pdq around the edge of the surface, so this
L

shows also that the circulation around any simple co-moving curvelAn phase space is
constant in time.

SThis also follows from the fact that the canonical two-form is invariant under canonical transformations,
and that the canonical variables at time ¢ + dt are related to those at time t by a canonical transformation.
7A curve which moves with the phase points.
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é< )
C(t+dv)

Cw

Fig. 7.04. Change in area

Angther w3y to see this last result is as follows. From Fig. 7.04 the change in the area
enclosed by the curve C(t), in the time interval tto t + dt, is given by

Change in area -f(bq dp - dqbp),

where the integration (with respect to (dg,dp)) is around C(t). Hamilton's canonical
equations then imply that

Change in arca ~ §{-8q (9H/dq)dt - (3H/p)dtdp] = ~FdH dt = 0,

since the change in the Hamiltonian in going around C(t) is zero.
The canonical two-form

w(1,2) = 8;,98,p - 8,98;p,

which is based on two independent displacements in phase space, is the first member of a
family of invariants, collectively called Rgi S dateeral invaciants. With its aid we
can construct a four-form by taking the exterior product 4 w of the two-form w with
itsel£5)

w A ©(1,2,3,4) = 2[0(1, w(3,4) - w(1,3)e(2,4) + 0, 4)w(2,3)].

The four-form is based on four independent displacements and, like the two-form, is
antisymmetric under interchange of any two of the displacements. Since it is built up from
the invariant two-form, the four-form is also invariant. This process, forming successive

exterior powers of w, can be continued until we run out of independent displacements.
Since phase space is 2f dimensional, the last member of the family is the 2f-form

8y 1. Amol'd, Mathemasical Methods of Classical Mechanics, (Springer-Verlag New York, Inc. 1978),
trans. K. Vogtmann and A. Weinsiein, p.170.
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%q; dpy 84,

8,q; b
® A WA Aw(l,2, -, 2f) = f! 201 0Py
e e

f terms 391

It is proportional to the determinant in which the 2f rows are the components of the 2f
independent displacements. This determinant is the volume of a 2f dimensional
parallelepiped with edges being the 2f displacements. As with all members of the family, it

is invariant. We thus see that H@?M&WML@MQ{M@I
connected co-moving region of phage space is constant in time. This is known as
Liouville's theorem.

In studying a system with a large number of degrees of freedom, such as a liter of

gas molecules at STP, we are usually unable to specify exactly the initial state of the
system. The best we can do is to give the probability for finding the system in various

regions of phase space. Thus let p(qy,pg.tg)dV, be the probability for finding the system
in the little phase space volume &V, surrounding (qg,po) attime tyi¥ In the time interval
to to t, each point in the little volume moves in accordance with the canonical equations,
the point (g, pg) moving to (q,p), and the little volume 8V, which surrounds (qq,pg)

moving and distorting to become a little volume 8V surrounding (q,p). Since no system
points enter or leave the little moving volume, the probability for finding the system in this
volume BV at time t is the same as that for finding it in 8V at time tg,

p(g,p,1)OV = p(qp.Po.to)dVy.

On the other hand, according to Liouville's theorem the volumes 8V and 8V, themselves
are equal, and thus the density, if we follow the moving phase space point, remains
constant,

p(Q’pvt) = P(%-Po»to)~
Regions of phase space move like an incompressible fluid. By considering a small interval
of time, we can rewrite this 4s
dp Jp
—=—+[p,H] = 0.
dt ot L]

This result, also sometimes called Liouville's theorem, is of fundamental importance in
statistical mechanics:10+

9Alternatively, we can imagine the system replaced by an ensemble of identical independent systems with
differing initial conditions consistent with our imperfect knowledge; p(Qq, Pg.te)8V, is then the number
of such systems in the region 8V, at time t,.

101, D. Landau and E. M. Lifshitz, Statistical Physics, 2nd ed., (Pergamon Press, Oxford, UK, 1969),

trans. J. B. Sykes and M. I. Kearsley, p. 9; Kerson Huang, Stasistical Mechanics, 20d ed., (John Wiley
and Sons, New York, NY, 1987), p. 64.
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Exercises

1. The motion of a particle of mass m undergoing constant acceleration a in one
dimension is described by
1
X = Xq + B0y g2
m 2
p=pp + mat .
Show that the transformation from present "old" variables (x,p) to initial "new"
variables (xg,pg) is a canonical transformation
(a) by Poisson bracket test

(b) by finding (for t = 0) the type 1 generating function F{x,xg,t).

2. (a) Show that
Q=-p
P=q+ Ap2 .
(where A is any constant) is a canonical transformation,
(i) by evaluating [Q,P]q'p

(ii) by expressing pdq - PdQ as an exact differential dF(q,Q). Hence find
the type | generating function of the transformation. To do this, you must
first use the transformation equations to express p, P in terms of g, Q.
(b) Use the relation F, = F, + PQ to find the type 2 generating function F,(q,P),
and check your result by showing that F, indeed generates the transformation.

3. The Hamiltonian for a particle moving vertically in a uniform gravitational field g is
2
H= —22-— + mgq.

m
(a) Find the new Hamiltonian for new canonical variables Q, P as given in exercise
7.02. Show that we can eliminate Q from the Hamiltonian (make Q cyclic) by
choosing the constant A appropriately.
{b) With this choice of A write down and solve Hamilton's equations for the new
canonical variables, and then use the transformation equations to find the original
variables q, p as functions of time.

4. (a) Show that
— L 4
Q - C]COSB m sinf

P = mwqsinB + pcosd
is a canonical transformation,
() by evaluating [Q,P]y o
(i) by expressing pdq - PdQ as an exact differential dF,(q,Q,t). Hence
find the type 1 generating function of the transformation. To do this, you
must first use the transformation equations to express p, P in terms of q, Q.

() Use the relation F, = F; + PQ to find the type 2 generating function Fy(q,P),
and check your result by showing that F, indeed generates the transformation.
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Suppose that the (q.p) of exercise 7.04 are canonical variables for a simple

harmonic oscillator with Hamiltonian
2

H=L4 lmuozq2 .
2m 2
(a) Find the Hamiltonian K(Q,P,t) for the new canonical variables (Q,P),
assuming that the parameter 0 is some function of time. Show that we can choose
6(t) so that K = 0. |
(b) With this choice of 8(t) solve the new canonical equations to find (Q,P) as
" functions of time, and then use the transformation equations to find the original
variables (q,p) as functions of time. ‘

(a) Show that the Hamiltonian for a simple harmonic oscillator is invariant under the

canonical transformation of exercise 7.04 (for 6 constaht).
(b) Find the associated constant of the motion.

(a) What are the conditions on the "small" constants a, b, ¢, d, e, and f in order that
q =Q+aQ2 +2bQP+cP2

p = P +dQ? +2eQP + fP?
be a canonical transformation to first order in small quantities?
(b) The Hamiltonian for a slightly anharmonic oscillator is

H —p—2—+-1-mm22+£3q3
2m 2 a

where B is "small." Perform a canonical transformation of the type given in part (a)
and adjust the constants so that the new Hamiltonian H does not contain an
anharmonic term to first order in small quantities, thus

2

= P71

H-= ot Emsz2 + second order terms.
m

(c) Write down and solve Hamilton's equations for the new canonical variables,

and then use the transformation equations to find the solution to the anharmonic

oscillator problem valid to first order in small quantities.
(a) Show that
! l L]
X =X+-——p,T Px = Px —mgt
m
Yy =y Py = Py
) 1 | ,
Z =z+‘n'l'pxr—"igt P. =Py

(where T is any constant) is a canonical transformation by finding the type 2
generating function F,(x,y,z,p%. Py, Py)-
(b) Show that the Hamiltonian

1
H = ——-—(pf +p§ +p§)+mgz
2m
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for a projectile near the surface of the earth is invariant under the canonical
transformation given in part (a), and find the associated constant of the motion.

(a) Show that
LI DU o ;
Q ﬁ\‘h t e Py ﬁ(pl mwq;)

—_— = —=(p; + Mwq,),
mw 2 2 P1 42
(where mw is a constant) is a canonical transformation by Poisson bracket test.

This requires evaluating six simple Poisson brackets.
(b) Find a generating function F(q;,q,,Q,,P;) for this transformation, type 1 in
the first degree of freedom and type 2 in the second degree of freedom.

Q; '%(‘h -

(a) Let x denote a column matrix of the canonical variables q),q,,p;,p2 for a
system with two degrees of freedom, and consider a linear transformation

x— x"=Mx
where M is a 4 x4 matrix with constant elements. Use the Poisson bracket
conditions to find the conditions on the elements of M in order that this be a
canonical transformation.
() Show that these are equivalent to requiring that M satisfy the condition

MIMa=l.
Here M is the transpose of M, and J is the marix

0 1
] J (=4
-1 0
where "0" stands for the 2 x 2 zero matrix and "1" stands for the 2 x 2 unit matrix.
Matrices M which satisfy the above condition are called symplectic matrices.

The dynamics of a system of interacting particles is governed by a Hamiltonian
N |Pi|2 PN
H= ) —/—+— Vilr, =r;).
i-El 2ml 2 2 / \j( 1 _;)

fo] jo

Suppose we view this system from a nnifomjﬂy accelerating coordinate frame
r,=r; -+at’.

Show that we can choose the canonical transformation connecting the two frames

(that is, its type 2 generating function F(r,p’,t)) so that the Hamiltonian H' in the

accelerating coordinate frame has the same form as H, except for an additional term

which can be interpreted as arising from the presence of an effective gravitational

field —a. What is then the relation between the momenta p; and p; in the two

frames?



CHAPTER VIII
HAMILTON-JACOBI THEORY

Much of our work to this point has been involved with leaming how to write down
the equations of motion of a mechanical system in various ways and with studying their
general properties. In this chapter we introduce Hamilton-Jacobi theory, which is the most
powerful analytic m)ethod known for finding the general solution to the mechanical
equations of motion:ls The method involves finding the generating function of a canonical
transformation from the original variables to new variables for which the equations of
motion are trivial. Apart from its practical aspects, Hamilton-Jacobi theory throws new
light on mechanics and its surprisingly intimate connection with optics, a connection which
sees its full fruit in wave mechanics,

Hamilton's principal function

Time (©) Q. t)

(g(®).v

(9o.to)

Space (q)

Fig. 8.01. Path in configuration space

The action S[q(t)] for a path q(t) in configuration space (Fig. 8.01), between end
points (gg,to) and (qj,t,), has been defined as the time integral of the Lagrangian
1.(q,q.t) along the path,

Slq()] = ﬁ 'L(g,g. 0 dt.

The actual path which the system follows from (gg.tp) to (g;.1)) is the one which makes
the action stationary. As we have seen in Chapter IV, this implies that the generalized
coordinates satisfy Lagrange's equations of motion, a set of f second order differential

IFor parallel reading see: Herbert Goldstein, Classical Mechanics, (Addison-Wesley Publishing Company,
Reading, 1950; 1980) 2nd ed., Chap. 10; Cornelius Lanczos, The Variational Principles of Mechanics
{University of Toronto Press, Toronto, 1949; 1962; 1966; 1970) 4th ed.; republished by Dover
Publications, Inc., New York, 1986, Chap. VIII.
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equations for the coordinates as functions of time. The general solution to these equations
has the form

q =f(tic)

where the ¢'s are a set of 2f independent assignable constants of integration. These are
usually determined by specifying the generalized coordinates q and velocities § (or the
generalized momenta p = 4L/3q) at some initial time tg,

. df
Qo = f(tp:c) qo = E?(“"c)'

Inverting this set of 2f equations gives the c's in terms of the initial conditions, the q, and
Qo- Here we do things a little differently. Rather than specifying initial conditions, we
specify two points (qq.tg) and (q;.t;), the ends of the path. We then have

qq = f(tg;c) q = f(t;;0),

which in suitable circumstances2'we can invert to obtain the ¢'s in terms of (4g.tg) and
(@1,t))- The action along the actual path from (qq,tg) to (q,.t,) is then a function
5(q;,t;;Q0,tp) of the end points. It is known as Hamilton's principal function.
Since we now wish to consider variable end points, we drop the subscript "1" on the final
point. In Chapter V we showed that the action S(q + Aq,t + At;qq + Agy,t, + Aty) along a

neighboring actual path with slightly different end points (qq + Aqg.tg + Atg) and
(q + Aq,t + At) differs from S(q,t;qq.ty) by an amount

AS = (pAq - HAL) - (ppAqq - Hpdtg).

Here pg and p are the generalized momenta, and Hy and H are the Hamiltonians, at the
original end points. We can read off from this the derivatives of S(q,t;qg,t;) with respect

to its 2f +2 arguments. The derivatives with respect to the initial coordinates q, and the
final coordinates q are

s s
an Po dq P

The first of these equations gives the momentum p, with which the system must leave q
attime t, if it is to arrive at q at time t; the second equation then gives the momentum p
with which it arrives. We can invert these equations to find

2y 1. Amol'd, Mathematical Methads of Classical Mechanics, (Springer-Verlag New York, Inc, 1978),
trans. K. Vogtmann and A. Weinstein, section 46.
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q = f(t;qg.Po, to) p = &(t:90-Po-to)-

which express the present time t variables (g, p) in terms of the initial variables (qo.Po)-
We see that Hamilton's principal function $(q,t;q0,t) is the (type 1) generating function
of a canonical transformation from old variables (g.p) to.niew vaclgbles (qo,po) (end -5
is the generating function of the transformation from (qq.pg) to (q.p)). This
transformation contains both the initial time ty and the final time t as parameters. Our
expression for the differential AS shows that |

8S as
22 _H, 2. H.

ato at

What is the content of these equations? Suppose that (g,p) are canonical variables with
dynamics governed by Hamilton's equations with Hamiltonian H = H(q,p,t),

dq oH dp oH

dt ap dt  dq

Then the new variables (qq,po) are canonical variables with ¢ynamics governed by
Hamilton's equations with Hamiltonian K = H + %% = 0. The new Hamiltonian is zero, so

the dynamics of the new variables is very simple,

Y40 _5  dpo_y,
dt da

the new variables are constant. This, of course, is what we want: the initial vanables
(qo-Po) are indeed a set of 2f t-fixed independent constants. We can turn this around and
say that with (qg.pg) fixed, the equations of the canonical transformation generated by 3
give a solution, (g,p) as functions of time t, to Hamilton's equations with Hamiltonian H,
which contains 2f + 1 constants, (qq,pg) and ty. However, it is not yet clear that
(90, Po) are the initial values of (q.p). Also, there seems to be one toO many constants.
The explanation of this is interesting and involves the equation 3S/dty = Hy which we
have not yet used. First note that specifying the 2f quantities (qq,po) at some particular
time tg, for instance at t = 0, is all that is required to specify completely a trajectory in
configuration or phase space. Now note that all those points (qp,Pp.tp) in phase space
which lie along the actual path through (qq,pg.to = 0) are equivalent "initial conditions";
they yield the same q(t) and p(t). The 2f +1 constants (qo,Pg,to) (now dropping the
primes) are thus not independent. To say that the (qo.po.to) lie along the actual path
means that (qg,pg). regarded as functions of tq for fixed (g,p,t), satisfy Hamilton's
equations with Hamiltonian Hy = H(qq,pg.to)
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dag g dpy My

dt,  dpg dtg aqq

Now -8 is the generating function of a canonical transformation from (qq.py) to (4.p).
This is just the opposite of what we started with and, proceeding as before, we see that
(q.p). regarded as functions:of ty, satisfy Hamilton's equations with Hamiltonian
Hg + 3(-8)/aty = 0. That is, they are constant. Alternatively, if we keep (q,p) "to-
fixed,” then the appropriate (qg.po) satisfy, as functions of ty, Hamilton's equations with
Hamiltonian H,. They behave as initial values should.

Perhaps an example will help clarify the concepts involved. Let us consider a free

Yarticle in one dimension. Such a system goes from (qq,ty) to (g,t) at constant velocity
2

(M) . Hamilton's

m, and thus at constant Lagrangian (= kinetic energy) = -
=1

t-1ty 2
principal function is therefore

m (q - qg)*

S(q.t:qq9.tg) = —
(q.t:q0.tp) 2 -t

The equations of the canonical transformation generated by S are

p-8_p37% 9 _ 9460
0q t—ty aqv t~tg
which yield
q=qg +(po/m)(t-tp) P = Po-
3 :
Since e -—[;(q?;%—-o—) = -H (= -kinetic energy), the transformed Hamiltonian is
19

zero, and (Qg.pg). as functions of t, are constant. The equations of the canonical
transformation then give the solution, (q,p) as functions of t, to the dynamical problem.
We further note that all sets (qqg,pg.tg) for which gg - {(pg/m)ty and pg are fixed are
equivalent, yield the same (q(t),p(t)). These are the sets for which (qq,p,), regarded as
functdons of ty, lie on the actual path.
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Jacobi's complete integral

We have seen that Hamilton's principal function S(q,t;qq,ty) is the generating
function of the canonical transformation from the variables (q,p) at time t to the initial
variables (qg.pgp) at time tg. S contains the fully integrated solution to the dynamical
problem; all that is left to do are differentiations and eliminations. We have also seen how
to find S once the solution to the dynamical problem is known. We now wish to reverse
the procedure: to devise some independent way first to find S, and then use it to write
down the solution to the dynamical problem. Following Jacobi we first consider the less
particular problem of finding a (time-dependent) generating function of a canonical
transformation from variables (q.p) at time t to new variables (B, a) which are constant in
Jtime. We do not specify these new variables further. We can take the generating function
to be a function of the old coordinates q (the present, time t, coordinates) and the new
momenta a, which gives a type 2 generating function S(q;a;t). We denote this generating
function by the same letter "S" as we used for Hamilton's principal function; if it is
necessary to distinguish between them, we add a subscript H = Hamilton or J = Jacobi.
The equations of the canonical transformation read

0S(q;a;t aS(q;a;t
p - I5(qiait) p= (g;ait)
ilel daq

The first set of f equations gives the new (constant) coordinates f. They can be inverted to
obtain the coordinates q as functions of time t and the 2f constants (B,a). Substituting the
result into the second set of f equations then gives the momenta p as functions of time t and
the constants (B,a). We thus obtain |

q = f(t:p,x) p=g(tf,a).

These equations, which give the canonical variables as functions of time and which contain
2f independent assignable constants (B,a), are the general solution to the dynamical
problem. Note that this procedure automatically produces the correct number of constants.
If we wish, we can express the constants (B,«t) in terms of the initial (time ty) values of

the canonical variables (qq,pg) by setting

g0 =f(teiB.a}  po =g(toiBrar),

and then inverting these 2f equations. However, we do not have to do this; constants other
than the initial values are often more convenient.

We have not yet considered how to find S(q;a;t). Since S generates a canonical
transformation to new variables which are constant in time, the new Hamiltonian
K = H + 8S/at satisfies dK/da =0, dK/df =0 and is thus independent of the new
variables. It is at most a function of time, and we can . without loss take it to be zero. We
then have
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where we have also used the equations of the canonical transformation to replace the
momenta p in Hby 6S/dq. This is the famous Hamilton-Jacobi equation. It is a first
order partial differential equation for S(q;a;t) with f+1 independent variables, the f
coordinates q and the time t. It is perhaps not immediately obvious where the new

momenta a in S(q;a;t) come from. We must find what is known as a complete
integral of the Hamilton-Jacobi partial differential equation. By definition, a_complete

integral contains as many independent assignable constants as there are independent
derivatives of S, and not § itself, appear in the Hamilton-Jacobi €quation, any solution $
can be modified by adding to it an arbitrary constant. We can take one of the constants a,

say Qg,;, to be this purely additive constant of integration. This constant has no effect on
the transformation, so we can ignore it, writing the complete integral in the form

S(ql7q25--'vqf;alva2v"iaf;t)

where none of the constants a is purely additive.3* These constants o are the new
momenta. The function S is known as Jacobi's complete integral.

If we are interested simply in writing down a general solution to a dynamical
problem, Jacobi's complete integral is all we require; there is no need (o find Hamilton's
principal function. It is nevertheless of interest to consider further the connection between
Jacobi's complete integral S;(q,a,t) and Hamilton's principal function Si(q. g0, tg). As
we have seen, Sy is the generating function of a_canonical transformation from present
(tame t) variables

(B.@) which are constant. We can accomplish the canonical transformation generated by
Sy in two steps by using Sy: transform first from (q.p) at time t to (B.«) using
S;(q,a,t), and then from (B,@) to (gg,pp) at time t, using -S;(qq.a.ty) (Fig. 8.02).

Since the generating function of this two-step process is the sum of the generating
functions of the steps, we have

Sna,Ldoto) = Sp(qios ) = $5{gprenty).

3We also require detl 3°S/3q, dax, 1= 0, so that the equations of the canonical transformation gencrated by §
can be inverted.
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q.t)
Sy(g:a;t)
SH(qv[;QO'tO) (B’a)
-S;(gg;aito)
(4o.10)

Fig. 8.02. Sy interms of S

The intermediate point (B,a) we end up on for the first step and start off from for the
second step must of course be the same point. This means that the S;'s on the right are the
same complete integrals, and that

_ aS;(q; o) _ 0S;(qg:a;tg)

P Ja oa

That is, the o's in the above Sy must be such that

This set of f equations gives the a's in terms of (9.t.qg-ty)- As we may easily check and
as required, Sy satisfies the equations

I
381(Q,5:90:t0) _ _ 9S;(qoisto) ~Po 985(q,t:90.t0) _ 9S5(gsast) _ p

9o 990 9q dq
aSH(q,t;qO,to) - (')SJ (qU;(l',[U) -H BSH (q,t;qo,to) - GSJ(q,a,t) --H
™ oo 0 ot ot

The partial derivatives are to be performed keeping the other indicated variables fixed.
Note that although the «'s in the S;'s are functions of (g.1.90,tp), this dependence need

not be considered since dSy/da = 0.
i As an example of Jacobi's approach, let us consider again a free particle in one
dimension. The Hamilton-Jacobi equation is

2
_L(?E) +.E§-0'
2m\ dq ot
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with a complete integral

S(q,E,t) = V2mE q - Et.

While it may not be obvious yet how this is obtained, it is clearly a complete integral: itisa_
solution to the Hamilton-Jacobi equation which contains the one non-additive constant E:4 é
The equations of the canonical transformation give

55-%_ g‘gq-t which yields q=1/%(l+ﬁﬁ)

and

p=—=+~2mE.

| 9q

This is the general solution to the dynamical equations, giving (g, p) as functions of time

and containing two constants (Bg,E); E, the energy, is the "new momentum" and B is the

"new coordinate” conjugate to E.
Now let's see how we can recover Hamilton's principal function from the above

Jacobi complete integral. We set

Su(q.t:q0,tp) = Sy(q,E,t) - S;(qq.E. tp)
=v2mE(q~qqg)-E(t-1tg)

and determine E by requiring that

2 f (@-q0)-(t-tg)=0.

This gives E = ?(———-—(i qo) , and substituting back we find
=ty
SH(th qo,to)"—(q qO)
t—tg

in agreement with our earlier calculation.

4E is positive; the square root can be positive or negative.
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Time-independent Hamilton-Jacobi equation

Quite often the Hamiltonian does not depend explicitly on time. The Hamilton-
Jacobi equation then becomes

S
H(q,a—) + s 0
dq ot

In these cases the time dependence can be eliminated once and for all. We try a solution of
the form

S(q.t) = W(g) + T(1),

the sum of a function W of the coordinates q alone and a function T of the time t alone.
Substituting this into the Hamilton-Jacobi equation , we find

(2 2). 8T
aq dt

The left-hand side is independent of t, whereas the right-hand side is independent of the
coordinates q. Both sides must therefore equal a constant which we denote by E,

Wol)p Lo
q dt

We call the first of these equations the time-independent Hamilton-Jacobi equation.
A Jacobi complete integral W of this equation is a function of the f coordinates q and

(including E) of f non-additive independent constants a. E is the constant value of the
Hamiltonian, which in common cases is the total energy. It is sometimes convenient to

take E as one of the f constants a. In other cases a set (;,a,,...,ap) not including E is
more convenient; E is then some function of these, E = E(a,a,,...,as). The equation for

the time dependence can be integrated trivially, so a complete integral to the Hamilton-
Jacobi equation for time-independent Hamiltonians has thg form
S= W((h,Q2,...,qt';('ll,(12,...,(1f) - E(al,az,...,ﬂf)t.

The equations of the canonical transformation then give

p = W(gie) gy IE(), _IW(gia)
dq da G103

These equations show that Jacobi's complete integral W is itself the generating function of
a (time-independent) canonical transformation, from a set of old variables (q,p) to a set of
new variables
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Q-ﬁ+g—§t P=a
o

for which the new coordinates Q are all cyclic. The new Hamiltonian for this set of
variables is simply E(P).

If we take E as one of the new momenta, say E = ay, then the second half of the
above transformation equations becomes

oW(q;E,aq, " a¢)

+t
Bl oE
Ba = aW(q;EE;az,---,af) where a=2,.0.
aa

The shape of the trajectory in configuration space is given by the last f-1 time-
independent equations, and the motion along the trajectory in time is given by the first
equation.

' For example, the time-independent Hamilton-Jacobi equation for a particle of mass
i1 moving in one dimension in a potential V(x) is

2
._i_(ﬂ) +V(X)=E,
2m\ dx

with solution

W -f 2m(E - V(x)) dx.

It is simplest to take E itself as the new momentum . The transformation equations then
give the solution to the dynamical problem,

aw w_m X
LW ey LA . SEN
P m( (x) B+t oE 72 J N2m(E - V(x))

In particular, for a simple harmonic oscillator with V = —ZmeZx2 we have

W = f\[Zm(E -%mwzxz)dx.

The integration can be performed by setting

X = J—Eﬁ- sind dx = 1‘ 2E2 cospdd,
mw mw

so that
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W = (2E/w) fcos2 b d¢ = (E/w)(¢ + sinpcos).

This is shown as a function of x in Fig. 8.03. Note that as x is taken through one cycle,

the phase ¢ increases by 2x, and W increases by 2nE/w. _Continuity of W in x can be

maintained by adding to the above expression, if necessary'®-an appropriate constant for
each cycle. These constants do not affect the role of W as a generating function, but the
resulting W is a multivalued function of x.

W
|
I
|

AnE/w |

_A_

|
2nE/w
— |
I >—1
—JZE/ mu)2 ﬁE/ mcu2

Fig. 8.03. W for a simple harmonic oscillator

The solution to the dynamical problem is obtained by differentiating this expression for W

with respect 10 x and E (remember that ¢ is a function of x and E), or more simply by first
differentiating the integral expression for W given above and then integrating. Either way
we find

p= ﬂV_ =+v2mE cos¢ with X = 252 sixiq)
0x mu

which is the well-known solution to the simple harmonic oscillator problem.
The generating functions we have been considering so far in this section have been

of "Jacobi type.” To reflect this, we now write them S; and Wjy. Itis of interest to

consider also the "Hamilton type" functions Sy and Wy for time-independent
Hamiltonians. Using the previously established connection between the two types, we
have for Hamilton's principal function

Su(q.t:q0.t0) = Wy(a.q0.E) - E(t - to)
where

Wy(a,q0.E) = Wi(g,E,a) - Wi(qp.E.a).

5This depends on the branch we use in determining ¢ from x.
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The f -1 constants (a5, :+,0¢) on the right are to be expressed in terms of (q,qq,E) by
using the f — 1 equations

W
da

=0 where a=2,..f.
a

Note that W; contains f constants, the f -1 a's and E, whereas Wy contains f +1
constants, the f qy's and E. The consequences of this will become apparent shortly. To
complete the passage to Hamilton's principal function S, we should also express the
energy E in terms of (q,t;qq,tg) by using the equation 89S, /0E = 0, which becomes in
this case

dW 4(q.90.E) _

t—1n.
E 0

We see that for time-independent Hamiltonians, Hamilton's principal function
Su(q.t;qq.t) depends only on the difference t ~ty of the final and initial times, as we
might expect. The function W(q,qq,E) is of interest in its own right. It is called

Hamilton's characteristic function. Its derivatives with respect to the tinal and initial
coordinates are given by

aWH(Q$quE) - aw](q,Eaa) = p

aq dq
0W(0.90.E) _ dW;(qg.E, ) _
- =Py -
dqq dqo

The a's in the middle expressions here are functions of (4.q.E), but they are to be held
fixed in the differentiations with respect to q and qq. At first sight these look like the usual
equations of a canonical transformation from (q,p) to (qg,pg) with type 1 generating
function Wy(q,q9.E) (or from (qy.pg) to (q,p) with generating function
-Wy4(q,90.E)). But this clearly cannot be: we know that specifying a final point (q,p)
does not fix a single initial point (qq,py) but rather a one-dimensional infinity, a line, of
initial points all of which lead to (q.p). The difficulty with W, as a generating function
comes when we try to invert the first set of equations to obtain the qg's as functions of the
(g.p). We can't do it; the transformation is stngular with dctiasz/()q(,aql= 0. We can
see this most clearly from the middle expressions above. The t ¢,'s arc contained in the
f-1a's, so one of the qg's must remain undetermined. Letting this gqq take on all

possible values then gives the line of initial points (qq,pg) for the given final point (q,p),
as required.
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Separation of variables

For systems with more than one degree of freedom we attempt to integrate the
Hamilton-Jacobi equation by using the method of separation of variables. Whether
this method works or not depends on the system being considered and on the choice of
generalized coordinates. If it does work, the method provides a powerful yet
straightforward approach to the solution of a dynamical problem. We have already used
this approach to separate out the time for systems with time-independent Hamiltonians.
Basically the method consists of trying a solution of the form

f
W(g, . qs30p, - 0f) = EWa(qa;alv""af)’

a sum of f terms each depending on a different one of the generalized coordinates. We then
try to rearrange the Hamilton-Jacobi equation so that one side of the equation depends only

on one of the coordinates, g, for instance, while the other side depends only on the other
coordinates (g,---.qr). Both sides of the equation can then be set equal a separation
constant. We try to continue the process until the variables are completely separated. If
we succeed, each of the resulting f equations then yields the corresponding W,, and we
also pick up f non-additive separation constants. That is, we obtain a complete integral.
We illustrate the method with some examples.}

Free particle, in cartesian coordinates

The Hamiltonian is
H = ——(p2 +p% +pD),
2m X Yy z
and hence the time-independent Hamilton-Jacobi equation is

o frawyt oWy rawy?]
2m[\6x/ (ay) \az/] E-

We try a solution of the form
W = X(x)+ Y(y) + Z(2).

The Hamilton-Jacobi equation becomes

60thers may be found in L. D. Landau and E. M. Lifshitz, Mechanics, (Pergamon Press, Oxford, 1960;
1969: 1976), 3rd ed., trans. J. B. Sykes and J. S. Bell, pp. 151-153.
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2 2 2
|8 (&) (3

The first term on the left-hand side is a function only of x, the second a function only of y,
and the third a function only of z. Each must equal a constant. We set

2 2 2
B (3 (e
dx dy dz

-E.

)
where ay, ay, a; are constants. In introducing these we have set (dX/ dx)2 equal ai
rather than «,, for example, merely to reflect the fact that we know this constant to be

positive. The energy E is related to these o's by

1 2
E= E—r;x—(ai +ay +a§).

Integration of the equations for X, Y, and Z gives
W=a,x+ayy+a,z,

and the transformation equations then give the solution to the dynamical problem,

a
Px =0y ﬁx"""Lt’x
m
B, + =
p, =0 +—=t =
y = 9%y y T y
[§ ]
P, =Q, B, +—Et=2z.
m

We recognize (ux,ay,az) as the cartesian components of the (constant) linear momentum,
and (ﬁx,ﬂy,ﬁz) as the inital (t = Q) values of the cartesian coordinates.



Central force, in spherical polar coordinates 157

Central force, in spherical polar coordinates
The Hamiltonian is

1 1
H=——(p,+ 2Pe+ 7 2 p¢)+V(r) =E,

and the time-independent Hamilton-Jacobi equation is

2 2 2
L [rawy? 1 oWy __I_(zw__) V@) = E.
am|\ar/) 2\ 90)  r*sin®0 0
We try a solution of the form
W = R(r) + ©(0) + B(¢).
The Hamilton-Jacobi equation becomes
2 2 2
1 (g_R_\ 12/d6\ 1 (dcb) +V()=E,
2m dr/ \do/ "~ r%sin’6 d¢

which can be rearranged in the form

2 2
2mr2sin’ 8{~1— /dR\ l(d@\

—_— + —_—

\ dr/ r2\ g6/

2m

2
do
+ V(r)-— E] - —(E) .

The left-hand side is independent of ¢, whereas the right-hand side is independent of r and

8. Both sides must equal a (negative) constant, which we set equal —Lzz. We shall see
later that L, is the (constant) z-component of the angular momentum. We then have

2 2
+V(r)+ —1‘—2-— E (@) -12.

2mr?sin 0 d¢

1 [(drR\? 1 dey?
|l 2%

The equation in r and 0 can be rearranged in the form

1 (dR N R TN -
2mr [2m\ )+V(r) E] [(d@/ sinze]'




158 Chapter VIII: Hamilton-Jacobi Theory

The left-hand side is independent of 8 and the right-hand side is independent of r, so both

must equal a (negative) constant, which we set equal -L2. We shall see later that L is the
magnitude of the total angular momentum. We have

2 2 2
LR . Le ()7,
2m\ dr/ 2mr

L2 2
|2,
\ do/

sin” 0

The variables are now completely separated, and we can rearrange and integrate to obtatn

2

R(r)-\/ﬁj'\ﬁz—wr)— 5
2mr

2
() - Hxﬁ —;;E—;—ade @) = L9

L’ 5
W=\/2mj E- V(r)- 2dr+J' L? - —£-d6 + L,9.

2mr i

dr

and hence find

sin“ 0@

The Jacobi complete integral W is the generating function of a canonical transformation
from (r,8,¢;p,,Pg,Py) to new coordinates which are cyclic and new momenta which are

constant. We can take these new momenta to be the separation constants E, L, L,. The
first half of the ransformation equations gives

W 4—\/ 1
<2 2L E - V(@) -
Pr or ) 2mr?
oW
A
p¢ ("iq) Z

Z
]
sin“ 6

- 2
Ps 3 \

The signs of the square roots in p. = mf and pg = mr20 (and in W) must be chosen so
that they are positive where r and 8 are increasing and negative where r and 0 are
decreasing. We can now recognize that L, = py = me? sin® 09 is the z-component of the
angular momentum, and that L* = pj + (pg /sin 8)> = m>r* (67 +sin® 6 ¢%) is the square of

the total angular momentum. This identifies and justifies our names for the constants L,
and L.

Now consider the second half of the transformation equations, which involves the
derivatives of W with respect to the new momenta E, L, L,. We can proceed in cither of
two ways: perform the integrations first to find W and then differentate, or differentiate
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and then integrate. Since we are more interested here in the equations for the orbit than in
W itself, we adopt the second alternative. This gives

oW m dr

bt — = —
Be + 9E 2 \[E Ve 12
- r — ——
2mr?
|
5 -V m dr -Ly,|__Ld®
Lol \/E v 2 \2mr?) JLZ 54
- r ——
® 2 sin?
oW do [ -L,\
P, =——= —5=1+9 .
: oL, \/[}— L2 \sin?0/
sin?8

The second of these equations gives a functional relation between r and 8, and the third

gives a relation between 6 and ¢; together they give the shape of the orbit. The first
equation gives a functional relation between r and t; it describes how the particle moves
along the orbit in time.

We must now do the integrations. We begin with the 8-integration in the third

equation. Let L, = Lcosi where i (0 s1sm)is the angle between the angular momentum
vector and the polar (z) axis. We then have

o-B cosi 4o J coti do
B = =
| o[ cos?i ) sin?8y1-coticot’6
sin“ 041 - 5
sin“ @
- . . . T i do - -
=¢ on setting coti cotd =sin¢ and CO_UZ% =-cos¢ d¢ .
; 8in

To sort out the sign, note that, for 0 sisx/2, 6 oscillates back and forth between n/2 +1
and 7t/2 - i\ *These are the values which make the square root zero and are where d6 and
the square root change sign. From 6; n/2 +1i through m/2 to =/2-i, d is negative.
For this half cycle and for 0 s i< n/zi',-%.-gthe variable ¢ increases from - x/2 through 0 to

/2. We must thus take ycos” ¢ = —cos$ so that the square root for this half cycle is
negative as well. The end result of the integration is

TFor m/2 <i =7, 0 oscillates between 7/2 + (- 1) and /2 - (x - ).
8For n/2 <ism, ¢ decreases from /2 through 0 to -x/2.
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coti cotl = sin(¢ - B ).
This can be written
sini sin® sin(¢ - By ) = cosi cost)

and can be identified as the equation of a plane passing through the ongin.

To see this and to conpect with standard astronomical terminology as used in the
_ description of planetary orbits\%we set up a system of cartesian coordinates with the origin
at the sun, the x- and y-axes in the plane of the ecliptic with the x-axis pointing towards the
vernal equinox, and the z-axis perpendicular to the plane of the ecliptic and pointing "north”
(Fig. 8.04). The orbit of a planet lies in a plane, the orbital plane, passing through the
sun, The orientation of this plane is described first by giving the angle i through which the
orbital plane is tipped with respect to the plane of the ecliptic. This angle i is the
inclination of the orbit. The intersection of the orbital plane and the plane of the ecliptic
is the line of nodes. Where the planetary orbit passes through the plane of the ecliptic on
its way from "south” to "north" is the ascending node, and where it passes through the
plane of the ecliptic on its way from "north" to "south” is the descending node. We

complete the description of the orbital plane by giving the angle Q measured "casterly” in
the plane of the ecliptic between the x-axis (direction of vernal equinox) and the direction of
the ascending node. The angle Q is the longitude of the ascending node.

"North"  Planet

Orbital plane ‘

Plane of ecliptic % i{/
(A

Perihelion o
i=inclination
y Q=longitude of
ascending node
w=argument of
perihelion

g

Line of nodes

To grnal equinox Ascending node
su, )/
(%29 Fig. 8.04. Parameters of planetary orbit

The nommal n to the orbital plane points in a direction 8 =1 and ¢ = Q- x/2, and
its cartesian components are given by

n = (sinisin Q,-sinicos$2,cosi)}.

3

9See, for example, Forest Ray Moulton, An Introdugtion to Celestial Mechanics, (Macmiltlan, New York,
NY, 1902, 1914, 1923}, 2nd ed..
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If we let
r = r{sinBcos$,sinBsin p,cos8)

be the radius vector from the sun 1o the planet, we can write the equation of the orbital
plane in the form

nr=0.
This gives
sinisin@sin(p - ) = cosicos,

which is what we found previously, with i now identified as the inclination and the
generalized coordinate By conjugate to L, identified as the longitude Q of the ascending
node.

We now look at the 8-integration in the second equation. Again setting
L, = Lcosi, we have

do [ sin6do =
= - 8

\jl _ cos’i ‘\/sin2 i-cos?®

sin?8

on setting cos@ = sinisin@ and sinBdO = -~sinicosBdB .

The sign can be sorted out as before and requires that +/sin?icos’ 8 = —sinicos. 8 is

the angle, measured in the plane of the orbit, between the radius vector and the direction of
the ascending node. To check, see Fig. 8.05 (in which the axes have been rotated about
the z-axis so that the x’-axis is in the direction of the ascending node), noting that the z-

component of a point on the orbit is rcos@ = rsinBsini.

Fig. 8.05. Angles 8 and 8

The second equation becomes
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dr

)

2

2 L
r’yE-V(r)-
\/ (r) 2mr?

and so we return again to the equation of the orbit first found in Chapter I. As shown
there, for the gravitational potential V = ~k/r the r-integration gives

_ L
O

a(l -e?)
T

=1+ecos(B - Bp).

which is the equation of an ellipse (for E <0) of semi-major axis a = k/2[E| and

- 217, : . , .
eccentricity ¢ = 1——-m-£'-2—l. The generalized coordinate 3; conjugate to the total

angular momentum L is the angle measured in the orbital plane from the ascending node to
perihelion. In astronomy this angle is called the argument of perihelion and is denoted
by w. Finally, the equation for how the planet moves along the orbit in time can be
integrated as in Chapter I, showing that the generalized coordinate B conjugate to E is
(minus) the time of passage of perihelion t,.

[

Hamilton-Jacobi mechanics, geometric optics, and wave
mechanics

In this section we explore some of the remarkgble connections which exist between
mechanics, geometric optics, and wave mechanics1%/For simplicity we consider a single
particle of mass m moving in a potential V(r). The time-independent Hamilton-Jacobi
equation is then

L wwpsvi-E
2m

where E is the energy of the particle. Suppose that we have a solution W(r) to this
equation. We can picture this solution by drawing the family of surfaces (Fig. 8.06)

W(r) = constant.

!0For parallel reading see: Herbert Goldstein, Classical Mechanics, (Addison-Weslcy Publishing Company,
Reading, 1950; 1980) 2nd ed., pp. 484-492; Cornelius Lanczos, The Variational Principles of Mechanics
(University of Toronto Press, Toronto, 1949; 1962; 1966; 1970) 4th ed.; republished by Dover
Publications, Inc., New York, 1986, pp. 264-280; Max Born and Emil Wolf, Principles of Optics,
(Pergamon Press, Oxford, 1959; 1964; 1965; 1970; 1975) 5th ed., Chaps. U1 and 1V, and appendices 1 and
II; E. Schrodinger, Collecied Papers on Wave Mechanies (Chelsca Publishing Company, New York,
1978), 2n0d ed.. Trans. of Abhandlungen zur Wellenmechanik (Johann Ambrosius Barth, 1928) by J. F.
Shearer and W. M. Deans., pp. 13-30.
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This is analogous to the situation in electrostatics, where we picture the electrostatic
potential by drawing the family of equipotential surfaces. At any point r, the momentum p
of the particle is given by the gradient of W,

p(r) = VW(r).

Its direction is perpendicular to the local surface W(r) = constant in the direction of
increasing W, and its magnitude is given by

p(r) = [VW(r)| = \2m(E - V(1)) ,

the second equality following from the Hamilton-Jacobi equation. Momentum is analogous
to (minus) the electric field. Just as we can go from W to p by differentiation, we can go
from p to W by integration, the difference in W between any two points being the line
integral of p along a curve joining the points,

AW =fp(r)'dr. ’
Since p is a gradient, all curves joining these two given points which can be deformed

continuously into one another give the same AW. However, there are usually sets of non-
equivalent curves, and as a result AW is usually multivalued; see, for example, Fig. 8.03.

T
Surfaces of -
constant W ~\ Lines of
~ ‘ momentum p
‘ g
W bl WO

Fig. 8.06. Surfaces of constant W and lines of momentum p

Another way to picture the situation is to draw momentum lines (Fig. 8.06),
analogous to electric field lines, which are everywhere parallel to p and perpendicular to the
surfaces of constant W. We can describe one of these lines by giving the position vector r
to a point on the line as a function of some parameter, which may be, for example, the

distance s along the line. Since dr/ds is a unit vector tangential to the line, the momentum
can be written p(r) = p(r)dr/ds. This leads to the equation satisfied by the family of
momentum lines appropriate to the particular solution W(r),

p(r)ij—r— = VW(r).
ds
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In the situation we are considering, the_particle moves in the direction of p and these
momentum lines form a two-paramctcrlf)family of possible trajectories of the particle. -
This set of trajectories is tied to the particular solution to the Hamilton-Jacobi equation with
which we started. We can eliminate W and hence obtain the differential equation for all
possible trajectories by differentiating the above equation with respect to s,

4 g VD)
ds\p(r)ds/ V( ds ) Ve,

where in the second equality we have set the rate of change of W along the trajectory equal
the magnitude p(r) of the momentum.

Interestingly, this general equation for a trajectory can be obtained from a
variational principle, sometimes called Jacobi's principle, which says:

The trajectory between points ry and ry at energy E
is such that the integral f‘p(r)ds
Ly
is stationary.

If we parametrize the trajectory using a parameter A, so that r=r(k) and

ds = :—;'%dh this is a variational principle with independent variable A, dependent

variables r, and "Lagrangian” p(r) % g—;: , for which the Euler-Lagrange equation is

G (Bj—i—)%) =/ (Vp(m).

i

If we take A =s, then J_ =1 and this reduces 1o the previous general equation for a
trajectory.

It should be emphasized that these momentum lines are possible trajectories of the
particle in space. Nothing has yet been said about how the particle moves along the
trajectories in time. Further, the surfaces of constant W and the momentum lines apply to
some fixed energy E. If the energy is changed, the surfaces and lines change. We can
introduce the time, and hence consider motion, in a couple of equivalent ways. The
simpler is to observe that for the situation considered here, momentum is mass times

velocity, p = mds/dt, so

dt = (m/p)ds.

Another way to introduce time is to recall from our earlier discussion of the time-
independent Hamilton-Jacobi equation that

1Three first order equations minus one constraint; all possible paths for a given system form a five-
parameter family.
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t=dW/JE
up to an additive constant. This is equivalent to the above, since

dt = —a—(ﬂ) ds = P gs = Bys.
dE\ ds dE p

If we use the time t for the parameter A instead of the distance s along the trajectory, we

“have J— = ds/dt = p/m and the general equation for the trajectories becomes

2

9,90 _ Py, v Pl) .
dl\mdt)_mVp V(2m) V.

This, of course, is Newton's second law of motion.
We can extend the idea of time dependence to the surfaces as well. The surfaces of
constant W can instead be regarded as surfaces of constant

S(r.t) = W(r)-Et

at t=0. As time goes on, these surfaces of constant lS move. The overall pattern of
surfaces remains the same, but the surface S =S, which coincides with the surface
W =5y at t =0, moves so as to coincide with the surface W = S, + Et at time t. The
velocity of a point on the surface, perpendicular to the surface, can be obtained by setting

0 =dS/dt = VW +(dr/dt) - E = p* Vyace — E.

This gives Vgypce = E/p, which should be contrasted with the particle velocity
V pasticle = dEfdp = p/m 12} We see that these moving surfaces do not keep pace with the
particles. Indeed, for fixed energy E the speeds of the surfaces and of the particles vary
reciprocally. Where the surfaces of constant S are close together, they move slowly; at
such points, however, the gradient of S, the momentum p, is large and the particles move
quickly.

The above picture of a family of surfaces of constant W or S pierced by a family of
perpendicular lines, which are the particle trajectories, may remind one of the situation in
geometric optics, in which one has a family of surfaces of constant phase pierced by an
orthogonal family of rays. As we now show, the analogy is indeed very close. Suppose
we have a wave of angular frequency w propagating through a medium which has an
index of refraction n(r) = c/v(r) which depends on position r; here c is the wave speed
at some reference point and v(r) is the wave speed at point r. The wave number k(r) is
given by

k(r) = w/v(r) = n(r)w/c.

12The surface velocity is like phase velocity, whereas the particle velocity is like group velocity.
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The wave function y(r) then satisfies the time-independent wave equation
V2 + kPP = 0.
Let us try a solution of the form
P = Ae't
where A and ¢ are the position-dependent amplitude and phase. We compute

Ve =(VA+iAV@)e® and Vi = (VA +2iVA - Vi +iAV - AIVYP el
and on substituting into the wave equation find

V2A +2iVA -V +iAV p - AV +k*A = 0.

Equating the real and imaginary parts of this separately to zero then gives the equations
satisfied by the amplitude and. phase,

VZA-AIV?+kZA =0 which becomes IViZ = k? + VZA/A
2VA-Vo+ AV23p=0 whichbecomes V:(A’V¢)=0.

These two non-linear coupled equations look considerably more complicated than the
original wave equation, so one might wonder what has been achieved. The answer is that
we are interested here in the geometric optics limit in which the properties of the medium
change slowly with position. In particular, we assume that the distance £ over which A
changes appreciably is much greater than a wavelength. Then

via_ 1 1 ¥
A 2 N 4%

and we can simplify the first equation, dropping the VzA/ A on the right-hand side since it
is small in comparison to k*. We then obtain an equation for the phase alone,

2
. [Vo(r)|” = k().

%
This is the famous eikonal equation of geometric optics. We see that it has the same
form as the time-independent Hamilton-Jacobi equation for a particle of mass m and energy
E moving in a potential V(r),

VW) = 2m(E - V(r)).
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The preceding mechanics considerations can thus be translated into optics equivalents’3
Of course, phase ¢(r) is dimensionless, whereas W(r) has the dimensions of "action.”

However, if we introduce a "constant of proportionality” % with the dimensions of
"action,” we can establish a correspondence

ALY PO [2_“_' _VG
¢(r) . k(r) " e (E-V(r)).

We might now speculate, as did de Broglie and Schrédinger, that perhaps classical
mechanics is in some sense the geometric optics limit of a more fundamental wave theory.
With this in mind we write down the time-independent wave equation which has the
Hamilton-Jacobi equation as its eikonal equation, namely

Vi + -‘152'1(5 -V{r)y =0.

If we take A to be Planck's constant (divided by 2x), this, of course, is the time-
independent Schridinger equation of quantum mechanics.

Exercises

See also exercise 11 in Chapter 1V,

1. (a) Obtain Hamilton's principal function Sy (z.ti2g,tg) for a particle of mass m
which moves vertically in the uniform gravitational field g near the surface of the

earth, by integrating the Lagrangian Ls%miz -mgz along the actual path

2= A +Bt-4gt® which joins the end points. The constants A and B must be

chosen so that the path passes through the end points.

m((z-z 2 Z+Z 1
2 (t—ty) 2 24

(b) Show that S;;(z,t;zg.tg) is the type 1 generating function of a canonical

transformation from present variables (z,p,) to initial variables (zg,p,0)-

(Ans. Sy =

2. (a) Obtain a Jacobi complete integral Sy(z,t;E) = W (z;E) - Et for a particle of
mass m which moves vertically in the uniform gravitational field g near the surface
of the earth, by integrating the time-independent Hamilton-Jacobi equation

2
_1_(_(1_\?_\ +mgz=E.
2m\ dz /

(b) Use your solution to obtain the general solution (z(t),p,(t)) to the dynamical
problem.

13James Evans and Mark Rosenquist, ""F=ma" optics,” Am. J. Phys. 54, 876-883 (1986).
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(c) Obtain Hamilton's principal function from your Jacobi complete integral by
setting Sy (z,t;29,ty) = S;(z,t;E) - S;(zg,t;E) and then eliminating E by using
Sy /3E = 0.

(a) Obtain Hamilton's principal function Sy(x,t;xg,ty) for the simple harmonic

oscillator by integrating the Lagrangian L = +mx® - L mw?x? along the actual path

X = Asinwt + Bcoswt between the end points. The constants A and B must be
chosen so that the path passes through the end points.

‘i“gﬁ:{“—ts[(xz + X%)COS(D(! - lo) - 2)()(0] )

(b) Evaluate the action along the constant velocity path from (xg,to) to (x,t), and
compare with the result of (a). In particular, show for those paths which start at
(xg = 0,t5 = 0) that S(actual path) < S(constant v path) provided «wt <.

(c) Show that Sy(x,t;xq,ty) is the type 1 generating function of a canonical
transformation from present variables (x,t) to initial variables (xg,tg).

The motion of a projectile near the surface of the earth (neglecting air friction) can
be described by the Hamiltonian

112 2
H= %—(px +py + p§)+ mgz
where x and y denote the horizontal coordinates and z the vertical, and p,, py. and

p, are their conjugate momenta.

(a) Set up and find a complete integral W to the time-independent Hamilton-Jacobi
equation.

(b) Use your solution to obtain x, y and z as functions of t.

The motion of a free particle on a plane can be described by the Hamiltonian
1, Pg\

where p, and p, are the momenta conjugate to the plane polar coordinates r and ¢.

(a) Setup and find a complete integral W to the time-independent Hamilton-Jacobi
equation,

(b) Use your solution to obtain r and ¢ as functions of t.
Use the Hamilton-Jacobi method to find the general equations of motion for a three-
dimensional isotropic harmonic oscillator with potential
V= %k(x2 + yz +2°%) = —%—krz.
(a) First use cartesian coordinates (x,y,z).
(b) Then do the problem again using spherical polar coordinates (r,8,¢).
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Use the Hamilton-Jacobi method to study the motion of a particle in a dipole field
with (non-central) potential
kcos@
Ve—.
r

(a) Write down the time-independent Hamilton-Jacobi equation for W in spherical
polar coordinates.

(b) Show that this equation can be solved by the method of separation of variables,

and obtain an expression for W of the form W = W(r,8,$;E,a;,a3). Your
answer will also involve certain integrals; you need not evaluate these at this stage.

(c) Interpret physically your separation constants a,,a3 by obtaining p,,pg.p, in
terms of 1,0,¢,E,0,,0;5. Hence show that the z-component L, of the angular

momentum of the particle is constant, and further that L? + 2mkcos® is constant,
where L2 is the square of the total angular momentum of the particle.
(d) By considering the equation
aw
E - R

find how r varies with time.

A particle of mass m moves in a field which is a superposition of a Coulomb field
with potential —k/r and a constant field F in the z-direction with potential —Fz.
The total potential is

V= -E - Fz.

r

(a) Set up the time-independent Hamilton-Jacobi equation in paraboloidal
coordinates (see exercises 3.09 and 6.04). Show that the variables separate, and
obtain an expression for the Jacobi function W of the form

W= Jz—mf\/k —o/m-12/2mE? + F%"/2+E§2 dE
+\/2_rr_1_f\/k +ajm-L12/2mm? - Fn*2+En*dn+L ¢

where L, and o are separation constants.
(b) Interpret physically the separation constants, showing that L, is the z-

component of the angular momentum, and that a = K, + %mF(r2 - z%) where K,
is the z-component of the Laplace-Runge-Lenz vector (see exercise 1.12).

(a) Write down the Hamilton-Jacobi equation for a particle of mass m and charge e
in an electromagnetic field described by a scalar potential ¢ and a vector potential
A,
(b) Show that the Hamilton-Jacobi equation is invariant under a gauge
transformation,

' =¢-(Icyarfor A'=A+VA,
provided the Hamilton-Jacobi function is also transformed,

S =S+ (efc)h.
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11.

12.

13.
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(a) Use elementary mechanics to show that the trajectory of a particle of mass m and
charge ¢ which moves in a plane (x,y) perpendicular to a uniform magnetic field B
is a circle, along which the particle moves with constant angular velocity
o = eB/mc.
(b) Obtain Hamilton's principal function Sy(X;,y,.t3X0.Yg,t0) by integrating the
appropriate Lagrangian (in the symmetric gauge)

L=im@?+ y?) + fmaxy - yX)
along the path joining the end points.
(Ans. Sy = %mmr2 cot%w(tl ~tg)+ -;-mu)(moyl - X,¥o) where r is the distance
between the end points)

(a) Write down the time-independent Hamilton-Jacobi equation for a particle of
mass m and charge ¢ in a uniform magnetic ficld B in the z-direction. Use cartesian
coordinates and a gauge in which the vector potential is A = (~By,0,0).

(b) Show that the variables separate, and obtain a complete integrat W.

(¢) Use your expression for W to obtain general expressions for the cartesian
coordinates as functions of time. Identify physically the separation constants a and

their conjugate coordinates §.

(a) Write down the time-independent Hamilton-Jacobi equation for a particle of

mass m and charge ¢ in a uniform magnetic field B in the z-direction. Use
cylindrical coordinates (p,¢,z) (the cartesian coordinates are X = pcosd,

y = psin¢, z) and a gauge in which the vector potential is A = %Bp& (its cartesian

components are A = (-1 By,+$Bx,0)).

(b) Show that the variables separate, and obtain a complete integral W.

(c) Use your expression for W to obtain general expressions for the cylindrical
coordinates as functions of time. Identify physically the separation constants o and
their conjugate coordinates .

A particle of mass m and charge e moves in uniform crossed electric and magnetic
fields, E in the x-direction and B in the z-direction.

(a) Write down the time-independent Hamilton-] acobi equation in cartesian
coordinates, and show that the variables separate for a suitable choice of gauge for
the electromagnetic potentials.

(b) Use your solution to find general expressions for the cartesian coordinates of
the particle as functions of time.



CHAPTER IX
ACTION-ANGLE YARIABLES

We now consider systems for which the Hamilton-J4cobi equation is completely
separable in at least one system of coordinates. We further assume that the system is
bound, so that the motion is confined to a finite region of space. Such systems include a
number of physically important situations and often serve as the starting point for more
complex investigations. For such systems we can introduce an especially convenient set
of canonical variables called action-angle variables. We shall see that apart from their
role as the natural variables for a separable system, the action-angle variables act in an
interesting way under adiabatic changes to the parameters of the systcm‘.js

Action-angle variables

Let (g;,---,qs) be a set of generalized coordinates in which the Hamilton-Jacobi
equation is completely separable. Jacobi's complete integral W can then be written

f
Wigia) = Y W,(giap, ),

a=l

a sum of f terms each a function of a different one of the coordinates and containing f
independent separation constants (a;,---,c¢). W is the type 2 generating function of a
canonical transformation to new variables in which the new momenta are these constants.
For each degree of freedom the old momentum p, conjugate to the old coordinate q, is
given by the first half of the transformation equations,

Thus, for separable systems each momentum p, can be expressed as a function of the
coordinate g, conjugate to it alone, and we can consider the behavior in each degree of
freedom separately. This is done most conveniently by sketching the trajectories of p,
versus q, in each (q,,p,) phase planég)(sec Fig. 9.01).

1For parallel reading see: Max Born, The Mechanics of the Atom, (G. Bell and Sons, Ltd., London, 1927),
translated by J. W. Fisher, revised by D. R. Hartree, pp. 45-99, 130-147; Herbert Goldstein, Classical
Mechanics, (Addison-Wesley Publishing Company, Reading, 1980) 2nd ed., pp.457-484, 531-540.

2The projection of the system trajectlorics onto each (q,,p, ) phase plane.
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Fig. 9.01. Phase space trajectories for bound systems (a) oscillation, (b) rotation
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For bound systems two types of trajectory can occur:

(a) Oscillation. Typically the momentum is related to its coordinate by a
quadratic equation of the form (p - a(q))2 = b(q) with solutions p = a(q)++/b(g). Now
if b(g) vanishes at q' and q" and is positive between these values, the resulting
trajectory of p versus q is a closed loop, with g increasing from q' to q” for the +
branch of p and decreasing from q" back to q' for the - branch of p. The coordinate
thus oscillates back and forth between turning points g and q". In order that the + and
- branches of p join smoothly at g’ and q", we further require that dp/dq — = at these
points, and this in turn requires db/dg =0 at q' and q". In other words, the zeros of

b(q) should be simple.
(b) Rotation. Another way for the motion to remain bounded, without requiring q
to lie in a finite interval, is for the system to return to its original state as the coordinate g,

typically a rotation angle in this case, increases by some given amount (9" -q°).
Coordinates q' and q" are thus equivalent, so a better way to represent this situation is to
replace the phase plane by a cylinder, with the lines q = q’ and q=q" joined. The
trajectories of p versus g for rotation are then also closed.

The phase plane for the simple pendulum, discussed in more detail in Chapter VI,
contains both types of trajectory (Fig. 9.02). The separatrices divide the plane into three

separate regions, in which occur rotation with 9 > 0, oscillation, and rotation with §<0.

Pq Oscillati_on
Separatrix
Rotation (3 > ()

/%
Rotation (8 < 0)
Separatrix

-7t

(Y

Fig. 9.02. Phase plane trajectories for the simple pendulum

For either oscillation or rotation, a bound separable system is periodic in each of
its degrees of freedom; it returns to its original state as each degree of freedom is taken
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around its cycle. This, however, does not necessarily mean that the motion of the system
is periodic. Motion has to do with the behavior in time. As we shall see, the various
degrees of freedom do not in general move around their cycles in the same or
commensurate times, so in general there is no time at which the system returns to its
initial state.

Integration of the momentum p, as a function of its conjugate coordinate g,
gives

Wa =fpa(qa;ah"'(1f)dqa am=1---f,

and the sum of these integrals over the various degrees of freedom gives Jacobi's
complete integral W. As the coordinate q, is taken around a cycle with the other

coordinates remaining fixed, the system returns to its original state, and W, changes by
AW, = fp 249,

where § denotes integration around the cycle. This means that W, and hence Jacobi’s

complete integral W, is a multivalued function of the state of the system. The integral is
the area in the (q,,p,) phase plane enclosed by (or for rotation, under one cycle of) the

trajectory. We denote the change in W by 2xn1,, where

1
Ia = E’fpa dqa

is called the action variable for the a'th degree of freedom. Action variables have the
dimensions of "action." The above definition gives them in terms of the separation

constants (o, -, 0,
L=l (o, ap)  a=leof.

We assume that this set of f equations can be inverted to obtain the o's in terms of the I's.
We can then take the more fundamental action variables (I},---,I¢) as the new momenta,
rather than the constants (a;,--,a;) which the process of separation of variables happens
to give. Jacobi's complete integral becomes

{
W@D = Y Woa,ilms 1),

a=1

where we have replaced the a's by their expressions in terms of the I's.
For each degree of freedom the coordinate ¢, conjugate to the action variable I,
is now given by the second half of the transformation equations,
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ow

I-E

¢ (qls'”oqf;llv“'rlf) a"l,"',f.

These coordinates are called the angle variables. The function W(q;I) is thus the
generating function of a canonical transformation from variables (q,p} to action-angle
variables (¢,I). The angle variables are dimensionless. Further, if the a'th degree of
freedom is taken around a cycle with the other degrees remaining fixed, W changes by
2x1,, and the angle variable ¢, for this degree of freedom changes by 2x while the
other angle variables remain unchanged,

By = 218y

The state of the system is a periodic function of each of the angle variables with period
2x. This means that any single-valued function of the state of the system, such as a
(non-rotation) coordinate x, can be expressed as a multiple Fourier series in the angle
variables, of the form

-0
|

o 2=} .
i(n;¢;+--+n
X= 2 zAni.'--.n,(II'""If)e( 191 £r)
oye=® 0

where the n's are (positive and negative) integers.
Let us now look at the time dependence of the variables. The Hamiltonian, which

separation of variables gives Ws a function of the separation constants (ag,-yaq), can

now be written as a function of the action variables (I,,---,I¢) alone, H = H(I;,--,I¢).

The angle variables are thus all cyclic variables. The action variables are constant in
time, and the angle variables change with time according to

do, _ H(D) _

I a=1--1.
a9, @a(D)

These equations define a set of constant in time (but action-dependent) angular
frequencies w,(I). The equations can be integrated immediately to give

$2(1) = ¢, (0) + w, (Dt a=1:f.

The angle variables increase uniformly with time. Any single-valued function x of the
jtate of the system can now be written

o - = (W + - +0rwpt
x(t) = E EAnlv“'-“re 10 o
o,

== =~

vhere the amplitudes A and frequencies w are functions of the (constant) actions L
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The motion of a system with f degrees of freedom is described in general by
specifying the trajectory of the system in 2f-dimensional phase space and the way the
system moves along this trajectory. Separable systems, however, possess a set of f
single-valued constants of the motion, the action variables (I;,-+-,I¢), so their motions are
comparatively simple, a given motion taking place in an f-dimensional subspace of phase
space, labeled by the action variables. Qne can show that the topology of thi is
usually that of an f-dimensional torus.3 Points on a given torus are labeled by the angle
variables (¢;,-+-¢r). The f independent cycles of the system correspond to the f
topologically distinct circuits of the torus. For a system with one degree of freedom, the

tori_are the closed curve - constant. For a separable system with two degrees of
freedom, the tori are two-dimensional surfaces, the surface of a "doughnut” (Fig. 3.03):

C by 2
L EEX

Fig. 9.03. Constant action torus in phase space

The system trajectory winds around and around the torus. The nature of the trajectory
depends on the frequencies w, = aH/ol, OIf the frequencies are all incommensurate, the

traiectory never returns to its initial point and it eventually covers the torus densely. On
the other hand =f The Tatio of any two_of the frequencies is a rational number Qr, more
generally, if th uen lated by gne op more linear equations ¢ form

nyw, + Nywy+--+ngwp =0

with.integer coefficients n., the trajectory is restricted to a subspace of the torus. In
particular, if there are f -1 independent such relations, the subspace is one-dimensional
and the trajectory is a closed curve. In this latter case the frequency ratios w, /w, are all
rational numbers, and the frequencies can all be written as integral multiples of some
frequency wg. In a time interval 2n/wg all angle variables increase by integral multiples
of 27 and the system returns to its original state. The motion is then periodic. Since the
frequencies are functions of the action variables, whether or not such relations between
the frequencies exist and, in particular, whether or not the motions are periodic depends
on the torus. In the general situation in which the frequencies are functionally
independent (detldw/all= dctIOZH/ 91%1= 0) and for most tori there are no such relations.

Nevertheless, distributed among the tori is an everywhere dense but of measure zero set
of tori on which there are rational relations between the frequencies and, in particular, on
which the motions are periodic.

3v.1. Amol'd, Mathematical Methods of Classical Mechanics, (Springer-Veriag New York, Inc. 1978),
trans. K. Vogtmann and A. Weinstein, section 49; P. J. Richens and M. V. Berry, "Pscudointegrable
Systems in Classical and Quantum Mechanics,” Physica 2D, 495-512 (1981).
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It sometimes happens that the frequencies satisfy one or more linear equations of
the above form independent of the values of the action variables. If they satisfy s such
relations we say that the system is s-fold degenerate. In particular, if the frequencies

satisfy f —1 such relations, or equivalently if the ratio of every pair of the frequencies is a
rational number, we say that the system is f -1 fold or completely degenerate.
RWW. To begin withgghere are additional single-
valued constants of motion over and above the f action varjables 1, possessed by any
separable system. Since w, = d¢, /dt, where the ¢, arc the angle variables, the above
linear relation among the frequencies can be integrated to give

0) + Nydy+ -+ 0gdg = constant.

The left-hand side is a constant of the motion, but it is not single-valued. However, it
only changes by integral multiples of 2x as the ¢,'s are takeL around their cycles, so its
sine or cosine is a new single-valued constant of the motion.~The constant of the motion

G(“Ql + n2¢2+- --+n£Q£) generates an infinitesimal cangnical transformation
e — e — e,

IL=1,~¢Gn,  a=L--f

which leaves thg Hamiltonian invariant. Thus only those combinations of the action
variables Which are invariant under this transformation can appear in the Hamiltonian®
Finally$¥consider the connection between degeneracy and the possibility of separating the
Hamilton-Jacobi 10 i re than one coordinate system. We have already noted
that the frajectory in phase space for a separable non-degencrate system covers the torus
defined by the action variables densely. This implies that the trajectory in real space fills
the region (q; <q; <qf,'-,qf <qf <qf) defined by the (action-dependent) turning
points of the coordinates. It is then clear that in this case separation of variables is
possible in only one system of coordinates, that defined by the region filled by the
trajectory. The trajectory for a degenerate system does not fill a region and thereby
define a coordinate system, and separation of variables may be possible in more than one
coordinate system.

Example: simple harmonic oscillator

We have seen that Jacobi's complete integral for a simple harmonic oscillator of
mass m and frequency w is

W = (E/w)(¢ + singcosd),

where E is the energy, and the phase angle ¢ is related to the coordinate x and momentum
pby

x-\/ZE/m(nz sing p=+v2mE cos¢.

4In two degrees of freedom the appropriate combination is n,1; - n1,.
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As the system is taken around a complete cycle, the phase angle ¢ increases by 2% and W
increases by

AW =2nE/w.
The action variable I is thus given by
l=E/w.
The trajectory in phase space, which for this one-degree-of-freedom situation is the
"torus,” is an ellipse with semi-x-axis 1/2E/mm2 , semi-p-axis v2mE, and hence an

enclosed area x+2E/mw? x v2mE = 2nE/o (Fig. 9.04). This, divided by 2=, is
another way to obtain the action variable L

2mE

—y2E/ mw

p

—J 2mE

Fig. 9.04. Phase space trajectory for a simple harmonic oscillator

We now, in the expression for W, replace the energy E by its expression in terms
of the action variable I, obtaining

W(x,I) = I($p +singcos¢) where sing= x/mw/21.

W(x,I) is the generating function of a canonical transformation to new variables in
which the new momentum is the action variable I. The coordinate conjugate to I, the
angle variable, is given by

(W)

= }x=¢+sin¢cos¢+1(2cos2¢)"9i\ -4

\ar),
where we have made use of (a¢/ al)x = —tan¢/21. The angle variable is thus simply the

phase angle ¢. Its time dependence is given by Hamilton's equation with Hamiltonian
H = wl,
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' So ¢ increases uniformly at a rate w, which for the simple harmonic oscillator is action
independent.

Example: central force

As we have seen, the Hamilton-Jacobi equation for a particle of mass m moving
in a spherically symmetric potential V(r) is completely separable in spherical polar
coordinates (r,6,¢). The momenta conjugate to these coordinates are given by

| 12 R 12 .
p,-VZm E_v(r)_2mr2' pg =+/L" - —%—. p‘,=LZ

sin@

where the separation constants are the total energy E, the magnitude of the angular
momentum L, and the z-component of the angular momentum L,. The resulting
trajectories in the (r,p,), (6,pg), and (9.py) phase planes are shown in Fig. 9.05.

Pr Pe Py

[\\ ! /"\ | .

r W2 -1 Jt/l'Z W2 +1 T 0 2n
1
u r U 0

Fig. 9.05. Phase space trajectory for a central force

The r and 0 degrees of freedom are oscillatory, with r oscillating between r; and r,
(where r; and r, are appropriate roots of Vg (r) = V(r)+ L2/2mr = E), and with 0
oscillating between n/2 -1 and n/2 +i (where cosi=L /L)éfwheleas the ¢ degree is
rotational, with ¢ changing by 2x over a cycle. The action variables are given by

iy 14 M L
I = j[; E- V(r)——v——dr - #; —% 9de o =5 fLade,

SHere we have assumed that L, 20 and hence 0 s i s x/2,if L, <0 and n/2 < i < «, then the limits of
Bare af2 - (x - i) and x/2 + (% - i).
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the integrations being over one cycle.
The integration for 1, is trivial, since L, is constant. For L, positive ¢ increases

by 2= over a cycle, whereas for L, negative ¢ decreases by 2x. Thus

I¢ - |LZ|
The modulus sign here arises because we have chosen 10 define the action variable by

going around the cycle in the direction the system would develop in time.

The integration for Iy can be performed by writing the integrand «]_ - («/‘ )2 / «f_ ,
thus obtaining

I L de L, cosidf
6=5_ =5 .
2 cos?i 2™| . cos? i
1-— 3 sin“ 841 - Y
sin“ 9 in“9

These integrals, in indefinite form, have both been evaluated previously in Chapter VIIL
Using those results, we find

Iy = -;—;—;fﬁ - %fﬁ

where sin8 = cos8/sini and sin¢ = coticot®. Overa cycle B increases by 2x, whereas
¢ increases by 2 if L, is positive or decreases by 2z if L, is negative. We thus obtain

Ip = L-|L,}-

The modulus sign on L, is essential (as a check, note that the defining equation shows
that Iy is evenin L,). The overall sign of Iy, however, depends on how we choose to go
around the cycle. Here we have gone around in the direction the system would develop

in time. The action variable Iy is then positive {note |Lz| < %.) or zero if the orbit lies in
the x-y plane (|L,[=L). In this latter case the trajectory in the (8,pg) phase plane
degenerates to the point (8 = /2,pg = 0).

The integration for I, cannot be performed explicitly without specifying the
potential V(r), but we can see that I, depends on the separation constants E and L, but
not on L,. To put it another way, the energy (ot Hamiltonian) can be expressed as a
function of the action variable 1. and the combination of action variables L = Ig +1,; the
variables 1y and 1, do not appear separately. This means that tmncics
wg = 0E/01g and wy = aE/ a1, are equal, and the system is at least one-fold degenerate.

This is also clear from the fact that the orbits lie in a plane through the origin: as ¢ goes
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through one cycle, 8 also goes through one cycle. As a particular case, now consider the
gravitational (or attractive electrostatic) force with potential V(r) = ~k/r. To perform

the integration for I, again rewrite the integrand using / = (( ) ;\/‘ to obtain

———dr.

2xl, (E +k/21) ? k2 L2/2mr
VE +k/r - */2mr?

The first term is zero, since the integrand is the exact differential d\/ Er? + kr - L*/2m.
The second term simplifies with the transformation r/a=1-ecosy where v is the
eccentric anomaly. The third simplifies with the transformation a(l - ez)/r =l+ecosa
where a is the true anomaly. Here a=k/(-2E) is the semi-major “axis and

= \/1 + ZLZE/mk2 is the eccentricity of the orbit (see Chapter ). We find

211, = \/mk*/(=2E) fdy - Lfda.

Both ¢ and a increase by 2n over a cycle, so we obtain

1, = mk?/(-2E) - L.

This can be turned around to express the energy in terms of the action variables, thus

mk?

T AL+ 1)
So for this potential the energy depends only on the combination of action variables
I; +Ig+I,. This means that the frequencies w, = dE/dl,, wy = dE/dly, and

0, = GE/BI, are all equal, and this system is completely degenerate. The orbits are
closed and, further, for this particular case r, 8, and ¢ go through their cycles at the same

rate.
Let us now consider the angle variables. To find these, we take Jacobi's complete

integral W(r,0,¢;E,L,L,), express the separation constants in terms of the action
variables, E = E(I.,Ig +1,), L=Ig +1,, L, = =y, and evaluate the derivatives

W aw W IW aW  IW W W oW

3 9 =0 .
a, E " a1, oE ¢t al, ©E AT

These are the angle variables conjugate to the action variables I, Iy, and 1,. We have
already noted that for any central force the frequencies w, and wgy are equal. This
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implies that the difference of the angle variables 6W/dl, and dW/dly is a constant of
the motion. In fact we have

oW oW oW

* .
al, dly oL,

The right-hand side was identified in Chapter VIIl as ¢~ ¢ = By, . the longitude of the
ascending node. Its sine or cosine gives a single-valued constant of the motion. Together
with the constants Iy and I, it can be used, for example, to construct the three
components of the (constant) angular momentum vector. For the gravitational force the
frequencies wg and w, are also equal, and the difference of the angle variables aW/alg
and 9W/dl, is a second constant of the motion. We have

The right-hand side was identified in Chapter VIII as B, the argument of perihelion.
Basically, it specifies a direction in the orbital plane. Finally, turning to the angle
variable dW/dl,, we see from the results in Chapter VIII that it equals w,(Bg +t), the
mean anomaly.

Adiabatic change

The Hamiltonian of a mechanical system usually depends on various parameters
X = (X;,X;,:-) in addition to the canonical variables q and p. For example, the
Hamiltonian for a simple plane pendulum depends on the mass m of the bob, the length ¢
of the string, and the gravitational field g. We are interested here in what happens if these
parameters are changed slowly with time, and in a way uncorrélated with the motion of
the system. Such a change to a system is called an adiabatic change. The behavior of
the action-angle variables under adiabatic changes turns out to be especially interesting.
For simplicity, we consider only systems with one degree of freedom.

We begin with a couple of simple examples. First, let us look again at the simple
plane pendulum. Suppose that the pendulum is undergoing small amplitude oscillations,

0 = Bpsinwt, of frequency w =+/g/f and amplitude 8g, and that we adiabatically
shorten the length of the string by pinching it at the top and then sliding the pinch
downwards (Fig. 9.06)8" The frequency of oscillation increases. Further, we do work on

the pendulum, so its energy E = %mmz(!!t)o)2 - %mglﬂ% and amplitude of oscillation

increase. To find how these changes are related, we now turn to the dynamics.

SThis avoids the raising of the point of equilibrium which would accompany pulling the string up through
a bole in the ceiling.
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Fig. 9.06. Pendulum with varying length

The downward force we must exert on the pinch is
F = f(1- cos8) = +£6?

where f = mg is the tension in the string. The force we exert, averaged over a period of
the oscillation, is thus

(E) ~$ mg83(sin? wt) = mg6] = E/2¢.

The work we do in sliding the pinch down a small distance -AZ in a time interval long in
comparison with the period is —(F)A¢ and equals the change in energy of the pendulum,

AE = ~(F)Al = ~EA¢/2¢.

Thus, on integrating we see that as the length of the pendulum decreases, the energy
increases such that

E+/? = constant.

This quantity, proportional to the action variable I = E/w, remains unchanged under an
adiabatic change in the length of the pendulum. It is an adiabatic invariant. We shall
soon show that this is a general property of action variables.

Before doing so, however, it is natural to ask: what is the change in the angle
variable if the parameters of a system are changed adiabatically? Surprisingly, this
question_does not appear to have been considered, at least in a general way, until
Hannayy¥'inspired by closely related work of Berry-on the change in the phase of a
quantum wave function under adiabatic changes, studied the problem. We have seen that
if the parameters X are constant, the change in the angle variable in a time interval ty tot

is o(t - tg), where w = 3H/d1 is the angular frequency. This frequency depends on the
parameters X of the system, and if these are changed adiabatically with time, we might

7]. H. Hannay, "Angle variable holonomy in adiabatic excursion of an intcgrable Hamiltonian," J. Phys. A
18, 221-230 (1985); M. V. Berry, "Classical adiabalic angles and quantal adiabalic phase," J. Phys. A 18,
15-27 (1985).

8M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc, R, Soc. Lond. A 392, 45-57
(1984).
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expect the change in the angle variable to become f: w(X(t))dt. This, however, is not
0

always the case; there is sometimes an additional change, now called the Hannay angle.
A simple system which illustrates this is the Hannay hoop: a bead slides without
friction around a plane wire hoop of arbitrary shape (Fig. 9.07). We describe the location
of the bead by giving its displacement s along the hoop from some fixed point on the
hoop. The magnitude p of the momentum of the bead is constant. The action-angle

variables are ¢ = 2xs/¢ and I = p¢/2x where £ is the total distance around the hoop.

A A0 1 r A8 cosa
p rABsina
la rAo\Ja
'AB z
Axis '

Fig. 9.07. Hannay hoop

Now let the hoop be slowly rotated in its own plane about some axis perpendicular to the
plane. At a given instant suppose that the bead is at a part of the hoop which is a distance
r from the axis, and which makes an angle a with r. If the hoop is rotated through a small
angle AO, this part of the hoop moves a distance rA® perpendicular to r. This
displacement can be resolved into components rABcosa perpendicular and rABsina
parallel to the hoop. The hoop exerts a force on the bead perpendicular to the hoop and
thus carries the bead along with it through the perpendicular displacement. However, it
does not exert a force on the bead parallel to the hoop, so the bead slips "backwards”
relative to the hoop a displacement As = —-rABsina. Now the bead is actually moving
around the hoop and, in the course of the small rotation A8 of the hoop, it makes many

circuits. We thus average this slippage over all the various locations of the bead around
the hoop,

(As) = —(—ifj:rsinads) A9,

The integrand is 2dA where dA is the area swept out by r as we go from s to s + ds. We
thus find

(As) = —(2A/€)AB

where A is the total area enclosed by the hoop. If the hoop is|slowly rotated through a
complete rotation so as to return to its original position, A8 = 2x and the bead slips
{As) = —4nA/¢. The bead is behind, by this amount, where it would be if the hoop had
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not been rotated. This displacement, or rather the slippage (A¢) = ~8a®A/¢* in the
corresponding angle variable, is the Hannay angle. If the haop is circular (Ad) = -2=,
which is easily understood, at least if the axis of rotation is at the center of the hoop. For
other shapes of hoop we can write (A$) = -2m+ 2x(l - 4nA/€?), with the factor in

brackets being always positive.
Let us now turn to the general one-dimensional mechanical system, described by

canonical variables (q.p) and with Hamiltonian Hy(q,p.X). Initially the parameters X
are constant. Now suppose that the parameters are changed adiabatically, and assume
that the variables (q,p) satisfy Hamilten's canonical equations with Hamiltonian obtained
simply by replacing the constant parameters by time-dependent ones, thus Hy(q,p, X(t)).
Whether or not this is so depends on the system and changes being considered, and also
on the set of canonical variables used. For example, it is true for the simple plane
pendulum with time-dependent string length £ if we use as canonical variables the angle
0 from the vertical and the angular momentum pg, but not if we use as canonical
variables the horizontal digplacement x = ¢sin8 from equilibrium and its conjugate
momentum p = pg/£cos0'8/ For these latter variables the Hamiltonian for the simple
plane pendulum with time-dependent string length contains the additional term
(px/&)(d¢/dr); it depends on the rate of change of £.

We are interested in the equations of motion satisfied by the action-angle
variables ($,I). At each instant t these variables are obtained from the (q,p) variables at
that instant by a time-dependent canonical transformation, with generating function
W(q,I,X(t)) which depends on the parameters X(t) at that instant. The action-angle
variables thus satisfy Hamilton's canonical equations with Hamiltonian

HLX(0) - Ho(LX(0) + (aW(qg,I(X(t))) ' dﬁf‘) '
I q.l

where Hg(1,X(1)) is the Hamiltonian for the (q,p) variables expressed in terms of the
action-angle variables. Because of the nature of these latter variables, it depends only on
the action variable I and not on the angle variable. In the second term we must express q

in terms of the action-angle variables (¢,1) after differentiating W with respect to the
parameters X. We see that the Hamiltonian for the action-angle variables usually
depends on the rate of change dX(t)/dt of the parameters as well as on the parameters
themselves. Now we have

(W) _(3“’) fa) (W) _r89) ,(8W)
\VoX /gy \0a ) y\0X/y, Xy, Pax),, VX,

so the canonical equations of motion for the action-angle variables can be written

9The variables (x,p) are obtained from the variables (8, p,) by a canonical transformation generated by
F, = pZsin8; note that p is not the x-component of the linear momentum.
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d 8 X a8 dxX
8 oaxye Lpvgrvw)-E S L pugevW)-—.
3~ 0N+ -pVa VW) 3 el PV YWy

Here o(IX)=0Hy(1,X)/o1 is the angular frequency, and we now use

V = 8/0X = (3/0X,,9/9X,) to denote differentiation with respect to the parameters
while keeping the action-angle variables fixed. These equations hold no matter how the
parameters change with time. If they change slowly so that (1/X)(dX/dt) <<w, the
system goes through many cycles in the time it takes the parameters to change
appreciably; it undergoes an adiabatic change. In calculating the change in the action-
angle variables over many cycles we can then to a good approximation replace the right-
hand sides of the equations of motion by their average

1-’2::
vor) mmm [ eeed
()= 5= fordd
over a cycle.

Consider first the "action” equation. Since the term in brackets on the right is a

single-valued function of ¢}19}thc averaging gives zero and we have for the behavior of
the action variable under adiabatic changes

The action variable is constant. It is an adiabatic invariant
Now consider the "angle” equation. The averaging of the right-hand side of this
equation over a cycle gives '

2A(LX) dX

% =~ w(l,X) +
de ) dt

where
A(1,X) = —(pVg) +(YW).

Recalling that the action variable [ is constant, integration with respect to time then gives
the change in the angle variable in the interval t5 to ¢,

9
Ap = j::w(I,X(t))dt = ﬁ;xa,X)-dx. |

The first term is the expected dynamical change in the angle variable. The second, which
depends on the path in parameter space but not on the time, is the Hannay change. Now

10The function W is multi-valued, but VW is single-valued since the change 2xl in W around a cycle
does not depend on X.
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the angle variable is defined only up to a canonical transformation (generated by
F, = ¢I'+ A(I',X))

¢ =9+ ﬂ\-%ll—& (together with ' = I).
That is, the "zer0,” the point from which we measure the angle variable, may be chosen
arbitrarily. Further, this choice may depend on the action variable. As can be seen from

the angle equation, this transformation changes the quantity & to

A=A +VA.

This has the same form as a gauge transformation of the vector potential in
clectrodynamics; hence the suggestive notation. The Hannay change in the angle variable
is thus usually "gauge” dependent. For closed circuits in parameter space, however, the
Hannay change

Ady = %jxa, X)- dX

is "gauge" independent. We call this quantity the Hannay angle. The integral of the
one-form A(LX)-dX around a ‘closed circuit in parameter space can be rewritten, by
using Stokes' theorem, aﬁ mwgral of the appropriate two-form over a surface which
has the circuit as its edge¥ L If, for simplicity, we take a system with three parameters, we
can use ordinary vector notation, introducing

B =V xA =(VqgxVp),

a quantity analogous to the magnetic field. Like its electromagnetic counterpart, it is
invariant under "gauge" transformations. The Hannay angle can then be expressed in
terms of the "flux” of this "magnetic field" through a surface in parameter space which
spans the circuit,

Ady = a_af [[30%)-ds;

this is an especially elegant way to state the result.

In our earlier treatment of the Hannay hoop we worked directly with the action-
angle variables. If we wish instead to use the above formulas, we must first describe the
system using canonical variables whose equations of motion contain only the time-
dependent parameters X(t) themselves and not their time derivatives dX(t)/dt. Suitable
variables for the Hannay hoop are

11See Chapter VIIL
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ods .
Q=J —+08 and Pa=prsina,
o rsina

where the parameter 6(t) is the angle turned Lhrough@ If this is changed by a small
amount A8, the canonical variables (Q,P) change by

AQ =~ +A0=-A0+A0=0 and AP=0;

rsina

that is, they remain constant as required. To use the above expression for the Hannay
angle, we need "VQ"= 9Q/36 =1 and "PVQ"= (2nl/{)rsina, where we have expressed

p in terms of the action variable I. We then have A = —(PVQ) = ~I(4nA/¢?), and

Ady =— {1322 49—

o (P 4mA 8nZA
ol L, U2 2

as before.

Exercises
See also exercises 7, 8, 9 in Chapter VI.

L. A particle of mass m moves in one dimension x in a potential well
V = Vg tan?(nx/2a)
where Vj and a are constants. Find the action variable I, express the total energy
E in terms of I, and find the frequency w = dE/dI. In particular examine and

interpret the low energy (E << V) and high energy (E >> V) limits of your
expressions (refer to exercise 1.01).

2. A particle of mass m moves in two dimensions (x,y) in a non-isotropic simple
harmonic oscillator well
2.2 1.0 2.2

Vx,y) = %mmxx +zmayy

where in general @, = w,.

12These variables are obtained from the (s,p) variables by canonical transformation. The generating
function W(s,P,0) = ( j; ds/rsina + e) P is chosen so that the Hamiltonian for the (Q,P) variables does

not contain a term proportional to df/dt. Since the Hamiltonian for the (s,p) variables has the form

H~ p2/2m - prsino.d6/dt, the function W can be found by solving the Hamilton-Jacobi-like equation
dW/00 = rsina dW/as.
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(a) Find the action variables (PR and express the energy in terms of these.

(b) Find the angle variables (¢,.¢,), and express the cartesian coordinates in

terms of the action-angle variables.

(c) Write down the angle variables and the cartesian coordinates as functions of
time. .

(d) Sketch the trajectories of the particle in (x,y) space and in (¢4.¢y) space.

A particle of mass m moves in two dimensions (x,y) in a rectangular "infinite
square well" potential (sometimes called a rectangular billiard)

~ Va0 for 0<x<a O<y<b and V—  otherwise.
(a) Find the action variables I, and Iy.
(b) Find the frequencies w, and Wy, and write down the condition for periodic
trajectories. Interpret your result geometrically. '

A particle of mass m moves in two dimensions (p,¢) in a circular "infinite square
well" potential (sometimes called a circular billiard)

V=0 for p<ca and V-»x for pza.
(a) Find the action variables I and I,.

(b) Find the frequencies w, and w,, and write down the condition for periodic
trajectories. Interpret your result geometrically.

A particle of mass m moves in a three-dimensional isotropic oscillator well

Va %mmzﬂxz +yl+zl) = -i—muuz(p2 +2%) = Jz—mu)zrz.

(a) Separate the Hamilton-Jacobi equation in cartesian coordinates (x,Y, z), find
the action variables, and express the Hamiltonian in terms of these. Find the
frequencies (w,,wy,w,).

(b) Separate the Hamilton-Jacobi equation in cylindrical coordinates (p,$.2), find
the action variables, and express the Hamiltonian in terms of these. Find the
frequencies (w,,w,,®,).

(c) Separate the Hamilton-Jacobi equation in spherical polar coordinates (r.0,¢),
find the action variables, and express the Hamiltonian in terms of these. Find the
frequencies (w,,wg,w,).

A particle of mass m moves in a central potential

k h
A% " + 7
(a) Find the action variable I, in terms of the energy E and total angular
momentum L.
(b) Use your result to express the energy in terms of the action variables

(Irvlevlo)-
(c) Find the frequencies (w,,wg,wy). Under what conditions (on the action
variables) is the motion periodic?
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A particle of mass m and charge ¢ moves in a three-dimensional isotropic

oscillator well V = %mwzrz, on which is superimposed a uniform magnetic field

B. Choosing the symmetric gauge for the vector potential A -%er and
cylindrical coordinates (p,¢,2z) with z-axis in the direction of the magnetic field,
show that the time-independent Hamilton-Jacobi equation separates, obtain the
action variables (I,14,1,), and express the Hamiltonian in terms of these.

“(Ans. H= (21, + I,)\/wz +0l ¥ Iywp + L, where w; = cB/2mc is the Larmor

frequency)

A simple harmonic oscillator with time-dependent frequency w(t) has a

Hamiltonian
2

opt 1 a2
H=——+—mo°(t)q".
3 (t)q
(a) Transform from (q,p) variables to (instantaneous) action-angle variables
(¢,I). Find, in particular, the Hamiltonian to be used with the action-angle

variables. |
(b) Write down Hamilton's equations of motion for the action-angle variables.

Consider again the simble plane pendulum undergoing small amplitude
oscillations, and suppose that the length £ is shortened adiabatically, this time by
pulling the string up through a small hole in the ceiling. Using elementary
mechanics, show that the energy of oscillation E increases such that E.. V¢
remains constant.

A particle of mass m moves in one dimension x between rigid walls at x = 0 and
at x = £. Using elementary mechanics:

(a) Show that the average (outward) force on the walls is F = 2E// where E is the
(kinetic) energy of the particle.

(b) Suppose now that the wall at x = £ is moved adiabatically. The energy of the
particle then changes as a result of its collisions with the moving wall. Show that

OE = —(2E/£)5¢.

(c) Hence show that E¢? remains constant under this adiabatic change. Compare
this result with that given by "invariance of the action variable.”

Consider again the Hannay hoop. Write down the Lagrangian (the kinetic energy
of the bead in an inertial frame) using as generalized coordinate the displacement
s of the bead around the hoop from some fixed point on the hoop. Assume that

the hoop is rotating with angular velocity Q = d8/dt. Find the Hamiltonian, and
!
write down Hamilton's equations of motion. Average (1/£) J;) ---ds the right-hand

side of these over the position of the bead around the hoop, and integrate with
respect to time to obtain the Hannay displacement {As) = —(2A/£)A8 in the
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position of the bead. Here A is the total area enclosed by the hoop and AB the

angle through which the' hoop is turned.

2

(Hint: the Hamiltonian is H = -2’;-— prsina Q) - %mr2 coszaQZ)
m

Consider the "generalized simple harmonic oscillator" with Hamiltonian
H=1(Xq? +2Yqp + Zp?)

where (X,Y,Z) are parameters with XZ > Y2.
(a) Show that the trajectories in phase space are ellipses and hence find the action

variable, showing that it is I = E/w where w = VXZ - Y? is the frequency.

(b) Express the variables (q,p) in terms of the action-angle variables (¢,1).
(There are various ways to do this; one way is to solve the Hamilton-Jacobi
equation to find the appropriate generating function.)

(c) Suppose that the parameters R = (X,Y,Z) are changed adiabatically (but

always with XZ > Y?) so as to take the system around a closed circuit in
parameter space. Show that the resulting Hannay angle is
R-dS
A¢H - 4m3 .
{J. H. Hannay, "Angle variable holonomy in adiabatic excursion of an integrable
Hamiltonian,” J. Phys. A 18, 221-230 (1985); M. V. Berry, "Classical adiabatic
angles and quantal adiabatic phase," J. Phys. A 18, 15-27 (1985).)




CHAPTER X
NON-INTEGRABLE SYSTEMS

We have been concerned mainly with integrable systems. Such systems are
characterized by the existence of a set of f independent analytic single-valued constants
of the motion, such as (or which may be taken to be) the f action variables I,. Further,
these constants of the motion must be in involution with one another; their Poisson
brackets with one another must vanish, [I,,1,]=0. Integrable systems, while physically
important, are in fact rare and non-generic, so let us consider briefly in this last chapter
the much more difficult non-integrable systems. Those who wish to pursue these matters
more deeply may consult the excellent review articles of Berry;! Helleman; % and Hénon 27
and the texts of Arnol'di# Gutzwiller;>and Lichtenberg and Liebermant® /

Surface of section

- We consider for the most part conservative systems, systems with time-
independent Hamiltonians. Such systems in one degree of freedom are always integrable;
they have one single-valued constant of the motion (e.g. the Hamiltonian). The simplest
such non-integrable system, which is the case we focus on here, thus has two degrees of
freedom. Phase space *(q;,p;:q2,P;) is then four-dimensional, but for conservative
systems the system point is restricted to a three-dimensional constant energy "surface”
H(q;.p;;92.P2) = E in phase space. Thus, one way to depict the motions at given energy

is to draw the trajectories in the three-dimensional space (q;.p1;q2) with p; determined
by the energy (Fig. 10.01), but this is clearly inconvenient. Instead, we shall see that we
can learn a great deal about a system from the simpler option of studying its behavior on
a two-dimensional slice through the constant energy "surface.”" This slice is called a

Poincaré surface of section. It can be obtained by setting, for example, g2 =0. The

IM. V. Berry, "Regular and Irregular Motion," in Topics in Nonlinear Dynamics, A Tribute 10 Sir Edward
Bullard, AIP Conference Proceedings, No. 46 (American Institute of Physics, New York, 1978), ed. Siebe
Jorna, pp. 16-120.

2Robert H. G. Helleman, "Self-Generated Chaotic Behavior in Nonlincar Mechanics,” in Fundamental
Problems in Statistical Mechanics (North-Holland Publishing Company, Amsterdam, 1980), ed. E. G. D.
Cohen, pp. 165-233.

3Michel Hénon, "Numerical Exploration of Hamiltonian Systems," in Les Houches Session XXXVI, 1981,
Chaotic Behavionr of Deterministic Systems (North-Holland Publishing Company, Amsterdam, 1983), eds.
Gerard Iooss, Robert H, G. Helleman and Raymond Stora, pp. 53-170.

4y, I Arnol'd, Mathematical Methods of Classical Mechanics (Springer-Verlag Inc., New York, 1978),
trans. K. Vogtmann and A. Weinstein.

SMartin C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag Inc., New York,
1990).

6A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, 2nd ed. (Springer-Verlag Inc.,
New York, 1992). |
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remaining pair of conjugate variables (q;,p;) can then serve as coordinates on the surface
of section.

P

e

Fig. 10.01. Trajectory in 3D constant energy "surface”

If we start the system at some point (Fig. 10.01, point 0) on the surface of section,
it normally wanders off into the third dimension on what may be a long and complicated
trajectory. For bounded motion, however, it eventually cuts through the surface of
section again in the original direction (Fig. 10.01, point 1).” (Between two such cuttings is
a cutting in the opposite direction.) This is repeated over and over, so for a given start
(that is, a given trajectory) we obtain a sequence of points on the surface of section
marking the successive cuttings of the surface by the trajectory of the system (Fig. 10.01,
points 0, 1,2, ...). Different starts usually give different sequences, so by trying a variety
of starts we can build up a variety of patterns of points on the surface.

Instead of following a given trajectory as it cuts successively through the surface
of section, we can consider this instead as a mapping of the surface of section onto itself,

X = X'=F(X),

where X stands for the pair (q,p). We can find the relation between X and X', the
mapping, by integrating the equations of motion, numerically if necessary, to obtain the
trajectory from a given start point X on the surface of section to the mapped point X', the
first cutting in the original direction of the surface of section by the trajectory. Mappings
can, of course, arise in other ways. For example, in studying the general behavior of
dynamical systems we may for simpticity and speed in computing replace a system with
continuous time development by a model system with discrete time development.

For Hamiltonian systems this mapping has an important property which we can
discover by considering the trajectories that start in a little patch of area on the surface of
section. These form a tube which eventually cuts again through the surface of section in

the original direction; the old patch of area wy is thereby mapped into a new patch wy
(Fig. 10.02).

(8,9,8,p)

Fig. 10.02. Tube of trajectories
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Hamiltonian dynamics is such that the area of the patch is invariant under the mapping,
s0 wy=wy. To show this, note that the integral of the canonical two-form
w = 8,qd,p - 6,pd,q over any closed surface, and in particular over the surface of the
tube of trajectories, ends plus side, is zero. Over the new end it is w§, and over the old
end it is ~wy. The side of the tube is composed of trajectories, so here we can always
take one of the displacements of the two-form in the direction of the trajectories,

61q=82—-}1 61p-—eﬁ.
op 9q

The two-form on the side of the tube then becomes
W= eia—ézp + s-a—}iﬁzq =ed,H=0,
op dq

since the trajectories are all at the same energy. Thus the side of the tube gives zero
contribution to the integral of the two-form, and we have wy - wg + 0 = 0 which is what
we wanted to show. It should be emphasized that' wy is nor wy at some _later time.
System points which start in wy at the same time arrive back at the surface of section at
slightly differing times, so the original patch is "tipped” when it returns to the vicinity of
the surface of section. The results of Chapter VII, which show that the area of this tipped
patch is equal to the area of the original patch, are thus not relevant here.

Of special importance on the surface of section are the fixed points X,
Xo = F(Xo),

which remain unchanged under the mapping (X — X), and the finite cycles of points
around which the system steps on successive applications of the mapping
(Xg—= X, ~--—X;). Acycle as a whole is invariant under the mapping, and if the
cycle has s distinct points, each point is a fixed point of the mapping F*. These fixed

points and cycles correspond to the periodic orbits, those closed orbits of the system
which eventually return to their start.

What happens near a fixed point Xy? We specify points near X, by the small
relative coordinate x. Then to first order in small quantities the mapping is linear

x' = Mx
where M is a two by two matrix with constant coefficients. Further, since the mapping is
area-preserving

detM = 1.

Now the way to handle this sort of problem is well known from studies of coupled

oscillators or from quantum mechanics. We begin by finding the eigenvalues A and
eigenvectors of M. This is useful because under the mapping the eigenvectors behave
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simply: they get multiplied by A. The original variables can then be found as linear
combinations of the eigenvectors. The behavior depends on the nature of the
eigenvalues. As we can easily show, the eigenvalues satisfy the quadratic equation

A+l/A=TrM

where TrM is the trace of the matrix M. This form of the equation brings out the fact
that the roots are reciprocals of one another. There are two types of root, depending on

whether the discriminant is negative or positive. If |Ter<2, the discriminant is

negative and the two roots are complex numbers; indeed, they are complex conjugates of
one another. This, combined with the fact that they are reciprocals, shows that they have

the form A = ¢***, with 2cosa = TrM. If [TrM]|> 2, the discriminant is positive and the
two roots are real. There are then two subcases: (a) TrM > 2, which leads to positive

roots A =¢*P, one greater and one less than 1, and (b) TrM < -2, which leads to
negative roots A = —¢*#, in both cases with 2coshf = [TrM|.

\[) First consider the case [TrM|<2. The (complex) eigenvectors e, satisfy the
eigenvalue equation

Me, =¢*“e,.
Any start x(0) can be written as a linear combination of these eigenvectors,
x(0)=a,e, +a_e_.

After n intersections of the trajectory with the surface of section (in a given direction), the
start is mapped into

x(n)=M"x(0)=e™a,e, +e ™ a_e_.

Now x(0) and x(n) are real, so a,e, and a_e_ are complex conjugates of one another
and we can set

. 2a.8, =a.e; £iaye,
where a,¢, anda,e, are real vectors. Thus at "time" n the system is at
x(n) = a;¢; cosna - a,€, sinna..

The "motion” is simple harmonic in the e, direction, and simple harmonic #/2 out of
phase in the e, direction. The resulting sequence of points thus lies on an ellipse (Fig.
10.03), and the fixed point on which the ellipse is centered is called an elliptic fixed
point.
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Fig. 10.03. Trajectory near an elliptic fixed point

(& Now consider the case TrM > 2. In this case the eigenvectors are real and define
four directions xe, and =e_ in the surface of section. If the start x(0) is in one of these

directions, each successive mapping brings the system point a factor e¢® nearer to the

fixed point for the e, directions, and a factor ¢*P further from the fixed point for the e_
directions, with the displacements occurring along the initial directions in both cases.
The ze, and =e_ directions are the ends, near the fixed point, of the separatrices. In
general we write the start x(0) as a linear combination of the vectors e, and e_ and after
n mappings find the system at

-n n
x(n)=e ﬁa+e, +e 5a_e_.

These points lie on a hyperbola (Fig. 10.04(a)) so this type of fixed point is called a
hyperbolic fixed point. The case TrM < -2, with negative eigenvalues, is similar,
except that instead of staying on one branch of the hyperbola, the successive points jump
back and forth between two branches (Fig. 10.04(b)).

(b

Fig. 10.04. Trajectory near a hyperbolic fixed point

@ There is actually a third type of fixed point, intermediate between the elliptic and
hyperbolic fixed points, called a parabolic fixed point. It occurs if |TrMi=2, so the
discriminant is zero. If TrM = +2, the single eigenvalue is A = +1. The single real
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eigenvector e is invariant, Me = ¢, under the mapping, and its direction gives a line of
fixed points which passes through the original point. Points not on the line are moved
under the mapping parallel to the line an amount proportional to their displacement from
the line, so the mapping is a pure shear. If TrM = -2, the eigenvalue is A = ~1, and the
eigenvector ¢ undergoes inversion, Me = —¢, under the mapping. The mapping is a pure
shear (—M) together with an inversion (-1).

Integrable and non-integrable systems

Let us now look at typical surfaces of section for integrable and for non-integrable
systems.

We first consider integrable systems. As an example we take the bound central
force problem in two dimensions. The Hamiltonian (in cartesian coordinates) is

H -%(pf + p§)+ V(\fx2 + yz).
m

The surface of section can be taken as y = 0 with py > 0. Coordinates on the surface are
then (x,p,) (Fig. 10.05).
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Fig. 10.05. Surface of section for a central potential

We find that the sequence of points resulting from a given start lies on a closed loop. For
most starts and for non-degenerate central force the points eventually fill this loop
densely. The reason is that the two-dimensional central force problem, or indeed any
integrable system with two degrees of freedom, has besides the energy a second constant
of the motion. For the central force problem it is the angular momentum

L = xpy - ypx.

The variables on the surface of section y = 0 are then restricted by the two conditions
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1 12 2
E;(px+py)+v(lxl)-E and xp,=L

with py >0. Eliminating p, between these, we see that for given energy E and angular
momentum L the coordinates (x,p,) on the surface of section are related by

2 2
Px L
EX - —= - V(ixl
2m 2mx? (x)

where x has the same sign as L. This relation is the same as that between position and

momentum for one-dimensional motion in a potential Vg (x) = Lz/ 2mx2 + V(Ixl), for
which the phase space trajcctorieil]’for bound motions are closed loops. These are.the
loops on which the sequences of points on the surface of section lie. Occasionally one
chooses a start which is on a periodic orbit. In this case the points on the surface of
section form a finite repeating set, a cycle, and do not fill a loop. Note for example the
central point, an elliptic fixed point, or the second largest "loop” in Fig. 10.05. If the
system is completely degenerate, as for a particle moving in a gravitational potential, all
orbits are periodic and all starts give a finite cycle. In this case there is yet another
constant of the motion. For the gravitational potential it is the direction of pericenter (the
direction of the Laplace-Runge-Lenz vector).

We now consider a system (which turns out to be non-integrable) first studied by
Hénon and Heiless83a particle of unit mass moves in the two-dimensional potential well

V= %(x2 +y3)+ %(3y2x -x.
This may be thought of as an isotropic harmonic oscillator potential perturbed by cubic

terms. These have been chosen so that the potential has three-fold symmetry, as can be

seen by writing the potential in plane polar coordinates, V -%rz —%rscos%. The
potential is zero at the origin and initially increases as we move away from the origin,
reaching the constant value V =~‘(; on the sides of the equilateral triangle which has

vertices at (1,0), (—%3/5—3-) and (__;__le"s_) Outside the triangle the potential tends to

- as r—> o in the three angular sectors of "width” m/3 centered on the directions of
the vertices, and it tends to + in the other three sectors (Fig. 10.06).

TFor fixed E and for various values of L; that is, for various slarts of given energy.

8M. Hénon and C. Heiles, "The Applicability of the Third Integral of Motion: Some Numerical
Experiments," Astron. J. 69, 73-79 (1964); F. G. Guslavson, "On Constructing Formal Integrals of a
Hamiltonian System Near an Equilibrium Point,” Astron. 1. 71, 670-686 (1966).
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Fig. 10.06. Hénon-Heiles potential

Motion outside the triangle or with too high an energy is unbounded, but if the particle
starts in the triangular region and with total energy E< —é— it rematns forever trapped in

this region. Further, the momenta are limited by %(pi + pf,) < -é-‘ The system motion 1S

then bounded. While we cannot solve this problem analytically (no second constant of
the motion is known), the problem does not seem complicated or unusual, and without
prior experience we probably would not expect anything very much different from the
previous (integrable) case to happen. Let us see what a surface of section study, as
carried out by Hénon and Heiles, reveals about the motion. We start the system at some

point on the surface of section y = 0 going from front to back and with energy E < % and

integrate the equations of motion numerically, following the orbit as it cuts again and
again through the surface going from front to back. The resulting sequences of points for

various starts and for energies E = 5, §, and ¢ are shown in Fig. 10.07.

Fig. 10.07. Surface of section for the Hénon-Heiles potential
atenergy () E= () E=4i(c) E=¢
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At the lowest energy E = 11—2 (Fig. 10.07(a)) the regular lines of points surround what

appear to be four "elliptic points." Also shown are what appear to be "separatrices”
joining three "hyperbolic points.” These results suggest that there may be a second
constant of the motion which we have been unable to find. Note, however, the slight fuzz
near the "hyperbolic points,” which is a foretaste of things to come. An increase in
energy to E = % changes the picture entirely (Fig. 10.07(b)). While we can still see the

four "elliptic points" surrounded by closed "curves” (but notice that one of the "curves”
appears to have broken up into five "elliptic points” and their surrounding "curves”), the
former "separatrices” appear to have degenerated into an irregular jumble of points.
What is even more surprising is that all these isolated points are the result of one
trajectory cutting through the surface of section. It is unlikely that we can pass a simple
curve through these points. If the energy is increased still further to E = -é— (Fig. 10.07(c))

the regular regions surrounding the "elliptic points” have practically disappeared and

most of the accessible region 4p2 +1x? - 1x* s 1 is filled by an irregular collection of

points, all from a single trajectory. The largely regular motion of Fig. 10.07(a) has
become the largely irregular motion of Fig. 10.07(c).

It must be emphasized that the Tesults for the Hénon-Heiles system, and not those
for the central potential, are the normal "generic” results for a conservative mechanical
system with two degrees of freedom. Pick a system "at random,” and it almost certainly
behaves like the Hénon-Heiles system. Our job is now to try to understand how and why
the various features which we have seen in the Hénon-Heiles system occur.

Perturbation theory

Suppose we start with an integrable system, for which we can introduce action-
angle variables (¢,I). The motions then occur on tori in phase space, a particular torus
being labeled by the action variables I, and points on the torus, being labeled by the angle
variables ¢. The Hamiltonian has the form Hg(I), a function of the action variables
alone. Now suppose we change the Hamiltonian slightly by adding a small perturbation
eH,(¢,I). The new Hamiltonian is

H($,1) = Ho(I) + ¢H, (§.1).

The variables (¢,1) are still canonical variables for this new system, but they are no
longer action-angle variables; the new Hamiltonian depends on the coordinates ¢ as well
as on the momenta I. Is this new system integrable? Does a new set of action-angle
variables (¢',1') with associated tori exist, such that the new Hamiltonian depends only

on the action variables 1'? If so, we expect them to differ from the old variables (¢,I) by
an infinitesimal canonical transformation

RSICAD) [-1 42000

¥=bre—n %
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with some generator G to be determined. The new Hamiltonian H’(I') is to be a function
of the new action variables I' alone. Now H' is obtained simply by changing variables
in H(g,I), so we have

YT - . 9G(9,10) L 9G(,I)
H'(T") Ho(l+e———a¢ )+£H,(¢,I +s—-—--—a¢_ )

~Ho(I)+ ¢ ( o (l)- "G(";" 1(¢J'))+-~-

where the @, = dHy /oI’ are the unperturbed frequencies. To see the implications of

this, we expand the generator G and the perturbing Hamiltonian H, in multiple Fourier
series in the old angle variables,

G@I)= T g™ and  H I = 3 by I0e™.

The expansion of the new Hamiltonian becomes
72 ' { ' : : ' ' ' in-Q\
H'(I')=Hy(I") + ekhln_o(l )+ E(m-mo(r Jga (1) +hy(IN)e J+
=0

The n = 0 term gives the new Hamiltonian
H'(I') = Hy(I') + ehypo(I)+--= Hpy(IN + 8(H,)+---,

where we have used the fact that hy,_o(I') is equal to the average (Hl(q),l’)) of the

perturbing Hamiltonian over the angle variables. The n=0 terms give the Fourier
components of the appropriate generator,

iy (1)
() = ——l—n—-;-»
" - (1)

so the generator i@

"N o ihln(l') in-¢
G@.I") z)———-—n_mo e

9The (angle-independent) n=0 term in G remains undetermined. All such a term does is shift the "zero
points” of the angle variabies.
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At first this would appear to provide the required modification to first order in € to the
action-angle variables. Indeed, these results are often uscfulfi?j}On closer examination,
however, there is a problem. For rational tori, those for which the ratio w,/w, of the
frequencies is a rational number r/s, the denominator n-wq in G can be zero. Even for
trrational tori the denominator can become, for suitable sufficiently large m, arbitrarily
small, so the convergence of the series in n is highly suspect. This is the famous
problem of small denominators. Apart from this there is also the problem of extending
the calculation to higher orders in ¢, and of proving the convergence of that process. For
these questions ordinary perturbation theory does not work very well, if at all.

Irrational tori

The solution to these problems was finally suggested by Kolmogorov (1954) and
proved by Arnol'd (1963) and Moser (1962), who developed an approximation scheme
with vastly improved convergence. With its aid Kolmogorov, Amol'd, and Moser were
able to show that "sufficiently irrational” tori, those for which the frequency ratio w, /w,
is sufficiently far from a rational number, may be distorted by a weak perturbation but
retain their structure. Such tori continue to exist after perturbation; they are stable. This
is the famous KAM theorem. We shall not attempt to go into these ideas; the essence of
the scheme can be found in the references in the introduction to this chapter.

It is interesting, however, to look into what is meant by "sufficiently irrational.”
To understand this, we must consider how to approximate an irrational number such as n

by rationals. One way is to truncate the decimal expansion n = 3.14159---. This leads to
the sequence of decimal approximates

3313143182
1'10°10071000"

10For example, they can be used to obtain the correction to the frequency of a simple pendulum for finite
amplitude oscillations. The potential energy is

V = mgé(l - cos8) = $ mgeB® - L-mge?+---.
The second order term in 6 lcads to simple harmenic motion at frequency @, = \[g—ﬁ . The fourth and
higher order terms modify this result. Let us treat the fourth order term as a perturbation. We express it in
terms of the unperturbed action-angle variables (¢,1) by setting 6 = \/21/ mé’w, sin¢ . The perturbation is
then

1 4 | GO
H = -—mgéf" = - sin” ¢,
1T T e 6me? ¢

Its average over a cycle,
I 4 I?
H))=- sin =— '
(Hi) =~ gz (50" 0) = - 3
gives the correction to the Hamiltonian. Differentiating with respect to the action I then gives the
correction , to the frequency,
a(H, I 1 2
w = = ——— = ——my0
ool smet 16 °°
where 8 is the amplitude of the oscillation.
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If we write one of these as r/s, the error is less than 1/s. But we can do much better than
this by using a continued fraction

a2+.-.

To find the continued fraction representation of a number, we subtract the integer part
(aq) of the number, invert and subtract the integer part (a,), invert and subtract the

integer part (a,), invert and -... For = this gives

1
1

n=3+
7+
15+
1+

1
1

292+

Truncating at the n'th stage gives a rational approximate. For n we have the sequence of
continued fraction approximates

We can show that these differ from = by less than 1/s?%,

r
T — —|

<=5,
S 2

S

and are the best rational approximates there are, in the sense that no rational fraction with
a smaller denominator does better.

Now KAM requires that the frequency ratio w;/w, be further away from any
rational number r/s than k(ss)/s2'5 ,

The function k() is unspecified but goes to zero with the perturbation strength £. The
excluded regions around the first few lowest order fractions in the interval 0 to | are
shown in Fig. 10.08.
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Fig. 10.08. Some frequency ratio regions excluded by KAM

It is important to realize that after taking out these regions there is still something left.
We can estimate the total length of the excluded region by multiplying the length
2k(.¢:)/sz‘5 around a fraction with denominator s by the number s of such fractions and
summing,
L o 2k(e) o |
<Y xs - 2k(e)2—13 - 5.224 x k(¢).
s=] s=1 3
This is an overestimate of the excluded length since many regions overlap. We see that
for weak perturbation the factor k(e) and the excluded length tend to zero, and thus the
frequency ratio for most tori is "sufficiently irrational.” So for weak perturbation most
tori continue to exist, and we expect most of the surface of section to be covered by
regular lines of points, much like an integrable system. Between these lines, however, are
the former rational tori, and the regions near them increase with the perturbation strength.
As we see in the next section, these rational tori break up in a complex way, and it is this
that gives the surface of section for a non-integrable system its character.

Rational tori . (i{ﬁ B3 frawlibaits )

In order to see what happens to a rational torus, we first return to an integrable
system in two degrees of freedom, looking at it this time from the point of view of the

action-angle variables (¢;,1;;9,,I,). The action variables I; and I, for 2 given motion
are constant; this defines the two-dimensional torus. The energy E = H(I},I,) is constant

on a given torus. Position on the torus is given by the angle variables ¢; and ¢,; these
increase uniformly with time,

¢ = ¢,(0) + oyt ¢ = $2(0) + wyt.

The frequencies are given by w, = 9H/dl; and w, = dH/dl, and are, in general,
functions of the actions.

We take the surface of section ¢, = 0. Suitable coordinates on the surface are
then (¢;,1;). Itis convenient to regard these, or rather ¢; (angle) and \/717 (radius), as
plane polar coordinates (Fig. 10.09)H11/ We start the system at some point (¢;(0),1,(0))
on the surface of section (¢, = 0,1,), where I, is determined by the values of I; and E.
In a time 2n/w, the angle variable ¢, increases by 2n and the trajectory again cuts
through the surface in the original direction. In this time the angle variable ¢, increases

HThe element of area on the surface is then V21dV21d¢ = d1de.
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by 2nw, /w, while the action variable I; remains constant. This is repeated over and

over. If we label the sequence of cuttings by an integer n, then (now dropping the
subscript 1)

$(n+1)=¢(n)+ 2na Kn +1)=1(n)

where a(I) = w,/w, is called the rotation number. It is the fraction of a rotation by
which ¢ increases per cutting. It usually depends on the action variable I

Fig. 10.09. Surface of section in action-angle variables

The sequence of points lies on a circle of radius 21, with successive points separated in

angle by 2rna. The nature of this sequence depends on the rotation number. If a is an
irrational number, the sequence of points never repeats and eventually covers the circle
densely. If, however, a is a rational number, say a = r/s, then after s cycles ¢ increases
by 2mr and the system point is back to its start. We can view the above as a mapping,
called the twist mapping, of the surface of section onto itself. In this mapping circles of

constant I are rotated, but the amount of rotation depends on the radius of the circle so
radial lines become curved. For rational circles the start is a fixed point of the

(mapping)’.l?% Indeed, since the rotation number is independent of angle, every point of a

rational circle is a fixed point of the (mapping)®.

So far we have merely restated what we already know about integrable systems.
Now suppose we apply a weak perturbation to this system. What happens to the circles
depends on whether the circle is an irrational or a rational one. According to KAM the
irrational circles are slightly distorted but they essentially retain their structure. The
behavior of the rational circles under perturbation is much more complicated. As we
might expect, most of the circle of fixed points is destroyed, but one can show that an
even number 2ks (k = 1,2,---) of fixed points remains. This is the Poincaré-Birkhoff
theorem. Further, half of these fixed points are of elliptic type and half are of hyperbolic
type. Each of these new elliptic points is a center surrounded by its closed loops. On
most of these secondary loops the frequency ratio is irrational, but for some it is rational,
and these in turn break up into an even number of fixed points, half elliptic and half
hyperbolic. This picture is repeated over and over, on finer and finer scales, ad infinitum

(Fig. 10.10). VIS 0

12What rype of fixed point is it?
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bt
o %@9

Fig. 10.10. Irrational circles (solid) and rational circle (dotted)
under perturbation, first step -

But this is not all' We still have to consider the behavior near the hyperbolic
points. Near such points are the ends of four invariant curves, the separatrices, each of

which maps onto itself (Fig. 10.11). On two of these (I",) successive points approach
closer and closer to the hyperbolic point without ever reaching it, and on two (") they
recede further and further away. |

N\ A
r/ V\»

Fig. 10.11. Invariant curves near a hyperbolic point

Let us see what happens as we move away from the hyperbolic point on one of the I,
curves. For an integrable system, such as a simple pendulum, the I', curve eventually
joins smoothly one of the I" curves from the same or a different hyperbolic point (Fig.
10.12(a)). For a non-integrable system, however, the ', and T curves do not join

smoothly but intersect (Fig. 10.12(b)). The point of intersection is called a homodlinic
point (or heteroclinic if the initial hyperbolic points are different). The existence of such
points and the consequences which we are about to discuss were first realized by
Poincaré.

F
F - F+ r _ r+
homoclinic point
() ®)

Fig. 10.12. Invariant curves for (a) an integrable system (b) a non-integrable system
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Consider successive mappings of the homoclinic point. These are on the I, curve and
hence approach closer and closer to the hyperbolic point, with the distance along the I',
curve between two successive ones decreasing exponentially (Fig. 10.13(a)). On the
other hand, they are also on the I’ curve and hence recede further and further from the
hyperbolic point, with the distance along the I'_ curve between two successive ones
increasing exponentially. To accomplish this, the T’ curve must weave back and forth
across the T, curve, with the loops getting longer and longer and thinner and thinner

(Fig. 10.13(b)). (The direction of crossing is preserved so between any two mappings of
the homoclinic point is a crossing in the opposite direction.)

B, P,
r P r
- A - ‘
P
(a) (b)
Fig 10.13. (a) Successive mappings of point Po
(b) Continuation of curve I'

A similar thing happens if we consider the pre-images of the initial homoclinic point,
obtained by applying successively the time reversed or inverse mapping; only the roles of
the I', and I'_ curves are reversed. Also, similar considerations apply to the other pair

of T', and T'_curves associated with the hyperbolic point. The resulting tangle is shown
in Fig. 10.14.

Fig. 10.14. Separatrices I', and I"_

We now combine what we have learned about the behaviors around the elliptic
fixed points (Fig. 10.10) and around the hyperbolic fixed points (Fig. 10.14) which
remain after break-up of the rational circles under weak perturbation. Fig. 10.15 attempts
to illustrate the situation, but it is only a crude approximation to the fuil picture. As we
have already noted, surrounding the secondary elliptic points are secondary ellipses, some
of which are rational. These in turn must break up just as we have discussed for the
primary circles, leading to tertiary elliptic and hyperbolic points, and this is repeated over
and over on finer and finer scales. In spite of its crudeness, however, this sketch does
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contain the general features of non-integrable systems which we have already noted in the
Hénon-Heiles problem.

Fig. 10.15. Rational circle under perturbation, second step

Finaily, we emphasize once again that this rich and complex behavior is the
normal or generic behavior of a conservative mechanical system with two degrees of
freedom.

Exercises

1. Investigate the surface of section (y = 0, py > 0, E fixed) for the two-dimensional
oscillator with Hamiltonian (refer to exercise 9.02)
2 plo 1
HaBx 2L +—-mu)fx2 +—mw§y2.
] ‘ 2m  2m 2 ) _
In particular, examine the nature of the sequences of points resulting from various
starts,

(a) if w, /ouy is an irrational number;
(b) if w, joo, is a rational number, w, fw, = r/s.

2. A particle of mass m moves in a (two-dimensional) central force with potential
Vv ._.li + _ll
roort

Using a computer or otherwise, plot the sequences of points (x,py) in the surface
of section(y =0, p, > 0, E fixed) which result from representative starts (refer to
exercises 1.13 and 9.06).

3 Consider a system with Hamiltonian

2
H-2 4 }—koxz + —1—k,‘x2.
2m 2 2
This is, of course, a simple harmonic oscillator with spring constant ko + &, and

is exactly soluble. Suppose, however, that we regard the term %—klx2 as a
perturbation. Find, to first order in the perturbation,
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(3) the canonical transformation from the unperturbed action-angle variables to
the perturbed action-angle variables;

(Ans.: the generatoris G = (k;I'/4k,)sin2¢)
(b) the Hamiltonian for the perturbed action-angle variables. Hence find the first
order correction to the frequency of oscillation. Compare with the exact result,

Find the continued fraction expansion of the following numbers, and write down
the first five or so continued fraction approximates. Verify that these are closer to

the number than (dcnominaior)'z. (a) 157/225; (b) N2 (c) the golden ratio,
y = (/5 = 1)/2; (d) the base of natural logarithms, e.

A model which illustrates many features of non-linear dynamical systems is the
kicked rotator. A particle moves on a (frictionless) circular track; every <
seconds it is given akick in some fixed direction (Fig. 10.16). ,

-
Direction
of kick

Fig. 10.16. Kicked rotator

If the angle just before a kick is 8, and the angular velocity is w,, then just after
the kick the angle is unchanged but the velocity is changed by -ksin 0, where k

is the swength of the kick. Just before the next kick the angle and velocity are
thus

eu-ﬂ =8, + Wyt

Wy, =w, -ksing, .
These equations can be scaled, wt— y, kv — vy, to give the form

8n+1 = en + Pay

Yo =Yo 'Ysmen .
Clearly, the angles 6 and 0+ 2xn are equivalent, as are the velocities ¢ and
Y + 2. We can thus confine our attention to the region -n<@<n, -x <P <x;
whenever 8 or ¥ moves outside the region, we translate it back by an appropriate
multiple of 2x. This mapping in the (6,y) phase plane, which describes the
dynamical behavior of the kicked rotator and, as ;;Eiums out, a number of other
systems, is sometimes called the standard mapi3/ Note that this map is area-
preserving, 3(0,,;,9,1)/9(8,,9,)=1. The “path" followed depends on the
start (85,%¢) and on the value of the parameter y. Your open-ended assignment
is to study the behavior of this system for various starts and parameters. To do so
to reasonable depth takes considerably more time than the typical exercise, but it
is time well spent.

13Boris V. Chirikov, "A Universal Instability of Many-Dimensional Oscillator Systems,” Phys. Rept. 52,
263-379 (1979).
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First, study the system "experimentally” uding a computer. Your pictures
will look more symmetric if you use instead of , an "average velocity”

Py =4(p, +,,,) which is more closely associated with the point n than
(before) or ¢, (after). Pick some y and a start and have the computer plot the

next 102 or 10? iterations; change the start and repeat until you see how things go
over the whole phase space; then pick another y. For example, y =1, 8¢ =0,

Py =-3to +3step 0.2 gives Fig. 10.17.

Fig. 10.17. Phase plane for the kicked rotator

You may wish to investigate the sequence of y's at which a sequence of cycles
becomes unstable. You will notice that the "distance” y,,, -y, from one

Yo = Ya-1

Yp+1 " Yo
tends to some finite number (Feigenbaum numﬂer). You may also notice that
parts of the plane look like scaled down versions of the whole plane and wish to
investigate this.

Second, study the system "theoretically” using analytic methods. How
much of these patterns can you understand? For example, do you understand the
loops near 8 = § = 0 and the conditions under which they exist? the loops near
6 =0, P = +n? the other loops? Look for fixed points and fixed cycles of points
and investigate stability. For example, can you show that (0,0) is a stable fixed

point only if 0 <y <4? What about the cycles of 2, 3,---? Can you picture these
physically? What can you say about the irregular behavior which seems to
occupy more and more of the phase space as y gets larger?

transition to the next tends to zero, but the ratio of successive distances
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Hamiltonian for 101
Lagrangian for 44
phase space for 102, 172
under adiabatic change 181, 189
rotating 104
Hamiltonian for 105
phase space for 106
spherical 45, 103
Hamiltonian for 104
Lagrangian for 46
pericenter 12
period 111

Index

of elliptic orbit 13
of simple harmonic motion 5
periodic 172, 193, 197
motion 175
perturbation theory 199
phase 5
phase space 100
for central force 178
for kicked rotator 209
for non-integrable system 191
for plane pendulum 102, 172
for rotating pendulum 106
for separable system 171, 175
oscillation 172
rotation 172
for simple harmonic oscillator 177
plane :
ecliptic 16
inclined 34
orbital 6
Poincaré integral invariants 138
Poincaré surface of section 191
Poincaré-Birkhoff theorem 204
point
elliptic 102
fixed 193, 204
elliptic 194
hyperbolic 195, 205
parabolic 195
homoclinic 205
hyperbolic 103
point transformation 80, 123
Poisson bracket 107, 130
for angular momentum 109
fundamental 109
invariance of 132
properties of 108
some useful ones 112
polar coordinates 6
acceleration in 6
angular momentum in 7
cnergy in 8
Newton's second law in 7
velocity in 6
position
for free fall 4
for simple harmonic motion 5
potential
effective 8
em scalar and vector 47
potential (energy) (sce energy)
principle
d'Alembert's 32, 40, 42
Fermal's 78
Hamilton's 61, 73



Jacobi's 79, 164

of stationary action 61, 73

of virtual work 31
probability amplitude 72
problem of small denominators 201
proper time 49, 69

relativistic
events, interval 68
mechanics 48
Riemannian spaces 65
rotation number 204
Runge-Lenz vector 25, 113, 169, 197
Rutherford scattering cross section 22

scattering 19
angle 20
Coulomb 21
Cross section
differential 19, 20
Rutherford 22
total 26
hard spbere 26
square well 27
Schridinger equation 73
from path integral 75
relation to Hamiltor-Jacobi equation 167
separation constant 155
separation of variables 155
and degeneracy 176
separatrix 102, 172, 195, 205
simple harmonic motion 5, 76
amplitude of 5
angular frequency of 5
period of 5
position for 5
simple barmonic oscillator 4
action-angle variables for 119, 177
Hamilton's principal function for 168
Hamiltonian for 112
invariance transformations for 96
Jacobi’s complete integral for 152, 176
perturbed 201, 207
phase space for 177
Snell's law 27, 79
solid angle 19
solstice
summer, winter 16
spatial displacement 82, 85, 123
spatial rotation 85, 123
spring constant 4
square well 23
standard map 208
Stokes' theorem 134
summation convention 65

Index 215

surface of section 191
for 2D oscillator 207
for ceniral force 196, 207 -
for Hénon-Heiles 198
in action-angle variables 203
symmetry 80
symmetry breaking 107
symplectic matrix 142

time development
as canonical transformation 126, 145
time dilation 69
time displacement 88
time, proper 49, 69
time-independent Hamilton-Jacobi equation 151
torque 6
torus 175, 199, 203
irrational 201
rational 201, 203
transformation
active 84, 90
canonical
definition 120, 128
in terms of canonical two-form 135
in terms of Lagrange brackets 129
in terms of Poisson brackets 131
in one freedom 116
type 1121
type 2 121
extended point 90, 91
gauge 48
identity 123
infinitesimal 82
infinitesimal canonical 125, 133
infinitesimal invariance 82, %4, 127
invariance 80, 91, 92, 126
passive 84, 90
point 80, 123
space-time 84, 123
Galilean 82, 87, 124
generating function for 124, 128
spatial displacement 82, 85, 123
spatial rotation 85, 123
time displacement 88
true anomaly 12

velocity 1

for free fall 4

generalized 41

in polar coordinates 6
virtual

displacement 31, 40, 59

path 60

work 31





